Степпер что такое это: Степпер: польза и вред

Содержание

СТЕППЕР | КАК ВЫБРАТЬ СТЕППЕР

Степпер

Степпер – это самый доступный вид кардиотренажеров на сегодняшний момент. Степперы это вид тренажеров, который имитирует ходьбу по лестнице.

Степпер — это тренажер с двумя педалями, которые поочередно совершают движения вверх-вниз. Он имитирует движение по лестнице и активно воздействует на мышцы ног и ягодиц. Степперы выполняют общую функцию кардиотренажера + ко всему прочему, тренируют переднюю часть бедра.

На степпере можно выполнять различные упражнения. Например, если вы наклоните туловище вперед (локти расположены на рукоятках), в интенсивной нагрузке окажется задняя часть бедра и ягодицы. Это наиболее актуально для женщин, так как они покупают данные тренажеры для своих проблемных зон.

 

Степперы используются так же альпинистами, лыжниками и просто любителями длинных пеших походов. Существует два вида степперов: с регулируемой нагрузкой и нерегулируемой.

На сегодняшний момент существует много разновидностей степперов с изменением различных нагрузок.

Полноразмерный степпер

Существуют степперы, которые оснащены рычагами для рук, которые помогают развивать плечевой сустав. Степперы, которые имеют независимый ход педалей, и при этом можно изменить нагрузку на каждую педаль отдельно. Существуют степперы, которые оснащены компьютером с программами, и они способны измерить пульс, частоту шагов и ритм, информацию о затраченных калориях и времени.

СОВЕТЫ ПО ТРЕНИРОВКАМ

Во время тренировки необходимо следить за правильным положением тела, так как степперы создают большую нагрузку на коленный сустав. При занятии с поручнями телу легче придать правильное положение. Для этого необходимо:

— Не смещать вес тела на руки

— Не смещайте руки, таким образом, чтоб пальцы на поручнях были направлены назад, а локти смотрели в потолок

— Старайтесь стоять прямо, слегка наклонившись вперед

— Не следует сводить ноги и чересчур сильно прогибать спину

— Необходимо следить, чтоб вся ступня полностью становилась на педаль

При всех описанных выше рекомендациях, Вы сможете максимально задействовать мышцы бедер и ягодиц, но при этом уменьшится нагрузка на коленный сустав.

При варикозной болезни, выраженных сердечно-сосудистых заболеваниях и заболеваниях суставов на таком тренажере лучше избежать занятий и целесообразней будет подобрать лежачий велотренажер.

Тренировка на степпере

К занятию на степпере необходимо так же готовиться, как и для занятий на более сложных по конструкции тренажерах. А именно:

— Принимать пищу следует не менее чем за 1,5 часа до тренировки

— Воздерживаться от приема пищи в течение 1 часа после тренировки

— Пить необходимо только чистую воду в небольших количествах

— Одежда для тренировок должна быть легкой и эластичной, позволяющей телу дышать

— Спортивная обувь с фиксацией голеностопа и пяточной части.

КАК ВЫБРАТЬ СТЕППЕР

Как выбрать степпер

Первым делом при покупке степпера, это необходимо определиться с размерами самого тренажера. Компактный степпер, так называемый министеппер, подойдет для дома, для тех, у кого ограничено пространство. Если место в доме позволяет, то лучше использовать полноразмерный степпер.

Вторым делом необходимо обратить внимание на ход педалей. Они бывают зависимые и независимые. Первый вариант напоминает велосипедные педали, это когда одна педаль выше, то вторая обязательно будет ниже. Независимые, это более  эффективные тренажеры, и регулировка педалей происходит независимо. Если вам попадется такой вариант, то советуем приобретать именно его.

Третий пункт в выборе степпера – это ЖК монитор и датчики. Следует проверить все работающие и неработающие элементы. При выборе предпочтение лучше отдать к степперу, который имеет данные функции, так как Вам будет интереснее заниматься, и Вы сможете видеть результат.

Так же не лишним будет ознакомиться с гарантией, возможности возврата данного тренажера и его ремонта.

Рекомендуем для просмотра видео «Кардиотренажер степпер».

КАРДИОТРЕНАЖЕР СТЕППЕР


Статьи по теме:

ИСТОРИЯ ТРЕНАЖЕРОВ. ДРЕВНИЕ ТРЕНАЖЕРЫ. ВИДЕО

ВЕЛОТРЕНАЖЕР. КАК ВЫБРАТЬ ВЕЛОТРЕНАЖЕР. ВИДЕО

БЕГОВАЯ ДОРОЖКА. ПОДБОР БЕГОВОЙ ДОРОЖКИ. ВИДЕО

ЭЛЛИПТИЧЕСКИЙ ТРЕНАЖЕР. ОПИСАНИЯ И СОВЕТЫ ПО ПОДБОРУ

ГРЕБНОЙ ТРЕНАЖЕР. ГРЕБНОЙ ТРЕНАЖЕР ВИДЕО

СИЛОВЫЕ ТРЕНАЖЕРЫ. ОПИСАНИЯ И СОВЕТЫ ПО ПОДБОРУ


 

Мини-степпер: почему он так эффективен?

Вы знакомы с этим небольшим предметом снаряжения для фитнеса, делающим чудеса у вас дома? Если нет, тогда знайте, что он поможет вам подняться еще выше…К отличной физической форме!

Каждый из нас признается, что не всегда просто найти время на спортзал. Но не нужно посыпать голову пеплом, ведь теперь можно спокойно заниматься укреплением мышц и формированием силуэта у себя дома! Как? С помощью этого маленького, но эффективного тренажера для фитнеса вы сможете заниматься собой на протяжении всего года.

 

Вперед к форме!

Поддержание физической формы очень важно для каждого человека, и все средства для этого хороши, даже занятия дома! Из всех направлений фитнеса степ-аэробика считается очень популярной и эффективной. Ей можно заниматься в спортзале или даже дома, она служит в качестве разрядки и выступает отличным способом сжечь большое количество калорий. Ее принцип прост: нужно тренироваться на

рычажном механизме, имитирующем лестницу, который предусматривает разнообразные варианты упражнений. Ее предназначение? Степ-аэробика улучшает общее физическое состояние и тренирует сердечно-сосудистую систему, а также повышает аэробную мощность (вырабатывает выносливость). Во время работы на степпере одновременно стимулируются мышечная и сердечно-сосудистая система. По мере прохождения занятий улучшаются дыхание и координация движений.

 

Зачем нужны занятия на мини-степпере?

Если у вас нет времени заниматься спортом постоянно, но вы все же хотите держать себя в форме, тогда попробуйте мини-степпер

универсальный фитнес-тренажер для накачивания мышц. В отличие от стандартных моделей, мини-версия степпера обладает особым преимуществом: она позволяет не только избавиться от лишнего веса и улучшить работу сердца, но и формирует и укрепляет мышцы нижних конечностей (ягодицы, отводящие мышцы, приводящие мышцы, четырехглавые мышцы, икроножные мышцы и т.д.). Его небольшой размер отличается повышенной практичностью и дает возможность совершенствовать свое тело не выходя из дома. Для этого нужно всего лишь поочередно наступать на специальные рычажки, симулирующие подъем по ступеням.

 

Мини-степперы Domyos

Чтобы привести себя в форму, вы можете выбрать из двух моделей. Мини-степпер Essential приводит в тонус мышцы нижней части тела благодаря боковому движению педалей, заставляющему работать мышцы ног, бедер и ягодиц и уменьшающему объем талии. Еще более усовершенстванная модель Twister делает рельефными все мышцы тела с головы до пят, повышая их тонус. Встроенные ручки имеют двойное предназначение: они позволяют проработать мышцы одновременно верхней и нижней половин тела

.

 

Все модели оснащены датчиком, подсчитывающим:

  • время выполнения упражнения,
  • затраченные калории,
  • количество шагов в минуту,
  • общее количество шагов.

 

Тренировка с мини-степпером

Каждой тренировке на мини-степпере должна предшествовать разминка, продолжительность которой должна составлять 3-5 минут или больше, если вам более 50 лет. Начинайте занятие с постепенного разогрева мышц и завершайте его плавным возвращением в состояние покоя. Если начать тренировку чересчур резко, то можно получить травму и растратить слишком много энергии по причине неправильного распределения нагрузки. Мягко, без рывков, увеличивайте частоту сердцебиений и постепенно отрабатывайте выносливость.

 

Если вы тренируетесь каждый день, тогда будет достаточно 10 минут упражнений. Если вы занимаетесь 2-3 раза в неделю, то тренировка должна длиться 20-30 минут, а при частоте 1-2 занятий в неделю она должна идти около 60 минут. Начинающие должны плавно увеличивать интенсивность и продолжительность нагрузки, которая должна соответствовать их уровню физической подготовки из соображений эффективности и безопасности.

 

В конце каждого занятия на мини-степпере устраивайте постепенный возврат в состояние покоя (т.е. снижение нагрузки), за которым будет следовать передышка. Начинать и заканчивать каждую тренировку лучше всего с ряда упражнений на растяжку. Растяжка служит для повышения эластичности мышц, что может предупредить травмирование. Также она помогает расслабить мышцы, чтобы позже у вас не возникло чувство ломоты и разбитости. Делайте растяжку медленно, без резких движений, причем каждое движение должно происходить на выдохе и длиться 30-60 секунд.

 

 

 

Если вы планируете всерьез заняться спортом, то мини-степпер выступит отличным решением для поддержания отличной физической формы перед возвратом в спортзал.

Чтобы добиться большей эффективности и заставить работать еще и мышцы талии и брюшного пояса, при каждом шаге поворачивайте бедра. Теперь остается только выбрать темп и наслаждаться занятием!

Степпер: особенности, назначение, преимущества

Тогда как нежелательные килограммы причиняют в основном только моральный дискомфорт, малая подвижность часто грозит и ухудшением физического самочувствия – варикозом, болью в спине и ногах, хрупкостью суставов. Оптимальным способом устранить эти и другие негативные последствия становится тренажер cтеппер.

Что это такое?

Степпер универсален. Он подходит и для похудения, и для укрепления мышц, и для реабилитации или профилактики проблем со спиной, ногами, суставами. Занятия на степпере действительно очень полезны для мышц. При выполнении упражнения создается эффект подъема по ступенькам.

На фото степпер выглядит как двухпедальный станок с удобными поручнями. Как и беговая дорожка, это устройство предусматривает наличие встроенного компьютера. В зависимости от модели степпер отслеживает:

  • скорость;
  • пройденную дистанцию;
  • показатели пульса;
  • частоту сердцебиения;
  • ритм движения.

Конструкции, которые производители предлагают купить для домашних тренировок, могут быть стационарными и мобильными (состоящими только из педалей и счетчика). Также в магазинах Москвы и России в целом можно выбрать модели с взаимосвязанными или независимыми моделями. Последние предусматривают регулировку нагрузок для каждой ноги по отдельности, что, судя по отзывам, действительно удобно.

Как и зачем пользоваться степпером?

Степпер – надежный помощник в борьбе с целлюлитом. Занятия приводят к выводу шлаков и токсинов из организма, очевидному уменьшению признаков «апельсиновой корки». Тренировка на степпере – это минус 250 калорий за каждые полчаса.

Примеры упражнений выглядят следующим образом:

  1. Согните руки в локтях и прижмите их к туловищу. Двигайтесь в спокойном, комфортном для вас темпе. При желании усильте нагрузку и продолжайте движение в ускоренном темпе на протяжении 4-х минут. В течение еще 1 минуты тренируйтесь на максимальной скорости. Повторите «цикл» 3-4 раза.
  2. Двигайтесь без спешки, одновременно с этим выполняя махи, разводы и рывки руками на протяжении 4-х минут. После этого чередуйте 2-хминутные упражнения на руки с обычной ходьбой следующие 20-25 минут.

Обязательно позвольте своему организму восстановиться перед тем, как спуститься со степпера – продолжайте неспешное движение 3-5 минут.

При выборе оборудования нужно определиться с размерами и выбрать тип хода педалей. Стационарные модели более функциональны, а министепперы позволяют перемещать оборудование без усилий. Изделия с независимыми педалями будут стоить дороже, но гарантируют эффективную, концентрированную проработку мышц.

Как выбрать степпер для дома.

Сравнение степпера и эллиптического тренажера

Поддерживать себя в хорошей физической форме — это не только и не столько вопрос эстетики, сколько жизненная необходимость. Особенно если речь идет об аэробной нагрузке, которая не только приводит в порядок вашу мускулатуру и нормализует вес, но и благотворно воздействует на сердечно-сосудистую систему. Но по тем или иным причинам, далеко не всякий может позволить себе регулярно посещать тренажерный зал. К счастью, сегодня есть возможность обеспечить себе физическую нагрузку не выходя из дома. Для этого нужно всего-навсего купить кардиотренажер. Скажем, степпер. Или эллипсоид. Секундочку… Так все-таки степпер или эллипсоид?

Несмотря на сходство, нагрузка и общая работа мышц на эллиптическом тренажере и степпере значительно отличаются. Хотя оба тренажера имитируют нагрузку при ходьбе и беге, нужно четко понимать, для каких целей вы приобретаете устройство.

Сравним сильные и слабые стороны степпера и эллиптического тренажера, чтобы вы смогли определиться, что лучше — эллипсоид или степпер, а также обратим внимание на специфику работы с этими тренажерами и их воздействие на организм.

Назначение степпера

Степпер имитирует ходьбу, но не просто ходьбу, а ходьбу по ступенькам. Движения при этом максимально естественны. Степпер хорошо подходит для проработки проблемных зон у женщин (да и у мужчин) и воздействует главным образом на мышцы бедер и ягодиц. Занятия на степпере не требуют совершенно никакой адаптации и подготовки, поэтому он отлично подходит новичкам, а также людям, которым сложно сразу начинать с серьезных нагрузок.

Эллиптический тренажер (эллипсоид) заставит вас совершать движения, которые больше похожи не на обычную ходьбу, а на нечто среднее между бегом на лыжах и вращением педалей велосипеда в положении стоя. К этому движению нужно приноровиться, и оно в любом случае отнимает больше сил, чем работа со степпером. Не говоря уже о том, что при этом работают практически все группы мышц. Сжигание калорий происходит очень интенсивно, благодаря чему эллипсоид вполне оправданно считается наиболее подходящим тем, чья основная цель — похудение.

Степпер. Преимущества и недостатки

— Преимущества степпера
Степпер, в особенности если он оснащен специальными стойками для рук, практически снимает нагрузку со спины, основательно при этом нагружая мышцы бедер и ягодиц. Именно эти участки наиболее сложно прорабатывать, а при помощи степпера работа с проблемными зонами становится необременительной. Также в зависимости от положения тела во время занятий можно распределять нагрузку так, чтобы достигать конкретных результатов. Например, если во время ходьбы на степпере держать корпус строго вертикально, то будет работать передняя поверхность бедра, если же наклоняться вперед, то вы будете нагружать заднюю поверхность бедер и ягодицы. При этом степпер бережно относится к вашей сердечно-сосудистой системе, поэтому может применяться даже людьми, испытывающими с ней некоторые проблемы. Немаловажным преимуществом степпера является его компактность (особенно если говорить о так называемых министепперах).

— Недостатки степпера
Степпер, как уже говорилось, очень умеренно нагружает сердечно-сосудистую систему. Но если это является преимуществом для новичка, то для человека более опытного в отношении нагрузок, это может стать недостатком. Дело в том, что для полноценной аэробной тренировки пульс должен поддерживаться в определенном диапазоне. На степпере, чтобы довести его до нужной частоты, приходится поддерживать высокий темп упражнений, что по силам не каждому.

Эллипсоид. Преимущества и недостатки

— Преимущества эллипсоида
Эллипсоид также имеет специальные рычаги для рук, которые с одной стороны разгружают спину, с другой — нагружают руки и плечевой пояс, заставляя вас совершать руками движения, похожие на движения при скандинавской ходьбе. Для людей с большим весом немаловажно, что при использовании эллипсоида практически отсутствует ударная нагрузка на суставы, неизбежная при обычном беге, когда вы отталкиваетесь при каждом шаге и, особенно, приземляетесь. Работает все тело.

— Недостатки эллипсоида
Эллиптический тренажер требует для занятий развитой координации. Это значит, что вам, возможно, понадобится несколько тренировок, чтобы прочувствовать, как распределять нагрузку и как двигаться. Кроме того, практически все модели эллипсоидов немаленькие, спрятать их в шкаф или задвинуть под кровать не получится. А это значит, что хочется вам того, или нет, а эллипсоид станет элементом вашего интерьера. Если вообще поместится в квартиру. Исключение составляют складные модели, но их выбор ограничен и, как правило, они подходят далеко не каждому. Например, в таких моделях часто ограничен максимально допустимый вес пользователя.

Вообще, степпер и эллипсоид отлично дополняют друг друга. Поэтому если у вас есть такая возможность, стоит приобрести оба тренажера. Если же вы решили ограничиться одним из них, мы надеемся, что помогли вам определиться.

Как выбрать степпер: все о параметрах

Итак, что же такое степпер? Название тренажера происходит от английского слова «step», что в переводе значит «шаг». Тренажер представляет собой устройство с двумя педалями. Педаль степпера, в отличие от педали велосипеда или велотренажера, имеет большую площадь, позволяющую поставить на нее ногу всей стопой.

Степперы различаются по целому ряду параметров. Во-первых, различают степперы и министепперы. В двух словах о каждом из типов.

Министепперы — компактные устройства, очень популярны в силу невысокой цены и возможности для использования в малогабаритных квартирах. Их размеры настолько невелики, что, как правило, их можно легко спрятать и достать в любой момент. При скромных размерах зачастую обладают весьма широкими возможностями. Недостатком является отсутствие опоры, поэтому при некоторых упражнениях приходится опираться на предметы мебели или на стену.

Степперы представляют собой полноценный тренажер с упором для рук. При этом во многих моделях данный упор позволяет получать дополнительную нагрузку на руки, плечевой пояс и мышцы живота.

Степпер практически всегда оснащен электронными устройствами для контроля различных характеристик (о них подробнее чуть ниже). Габариты его значительно больше, чем у министеппера, но складные модели иногда могут и посоревноваться в компактности.

Конструкция степпера

По конструкции различают классические, поворотные степперы, а также степперы лестничного типа. Особняком стоят так называемые балансировочные степперы.

Классический степпер

В этом варианте степпера педали двигаются строго вверх-вниз. Оси их горизонтальны, такой степпер воздействует на ограниченное число мышечных зон, но такое воздействие более сфокусировано. Чаще всего такой конструкцией обладают министепперы бюджетного сегмента.

Поворотный степпер

Оси педалей расположены под углом, благодаря чему при каждом шаге стопа слегка выворачивается. Такая нагрузка более равномерно распределена и активнее задействует мышцы внутренней поверхности бедер, икроножные, а также мышцы пресса и спины. Иногда поворотными степперами называют конструкцию, которая включает в себя упор для рук, вращающийся вокруг оси, что заставляет пользователя разворачивать при ходьбе корпус попеременно вправо и влево.

Степпер лестничного типа

В этом варианте степпера педали отсутствуют. Их заменяет бесконечная лента со ступенями, что-то вроде очень короткого эскалатора. Достоинство данного тренажера — максимально естественная нагрузка, поскольку эта конструкция абсолютно точно имитирует ходьбу по ступенькам. Недостаток — высокая цена и приличные габариты. По этой причине такие тренажеры редко приобретают для дома, но их легко можно встретить в тренажерных залах.

Балансировочный степпер

Этот тип степпера функционирует подобно рыночным весам с двумя чашами. При работе на нем ваш вес постоянно смещается то вправо, то влево, благодаря чему хорошо прорабатывается мышечный корсет тела. Также занятия на балансировочном степпере благотворно влияют на вестибулярный аппарат и улучшают чувство равновесия.

Тип нагрузки степпера

По типу нагрузки степперы подразделяются на механические и электромагнитные.

Механический степпер

В этом степпере нагрузку создают герметичные цилиндры, в которых двигаются поршни. Гидравлика хороша своей автономностью: для работы такого тренажера не обязательно подключение к электросети. Благодаря этому механическая нагрузка часто применяется в министепперах, которые часто переносят с места на место, или в бюджетных моделях классических степперов. К недостаткам этого варианта можно отнести шумную работу поршней и невозможность точно отрегулировать степень нагрузки.

Электромагнитный степпер

Здесь нагрузку создают электромагниты, что предоставляет возможность ее точного регулирования. Это, безусловно, является преимуществом, наряду с бесшумностью тренажеров, основанных на этом принципе. Однако цена на такие тренажеры будет выше, чем на механические, кроме того, в процессе тренировки они требуют постоянного подключения к электросети, а они весьма прожорливы в отношении электроэнергии и достаточно громоздки.

Чтобы закрыть тему конструктивных особенностей, упомянем еще одну характеристику.

Зависимые и независимые педали степпера

Все степперы в зависимости от хода педалей подразделяются на две группы:

Степперы с зависимым ходом педалей

В таких тренажерах педали жестко связаны между собой механической связью. Если одна педаль опускается, вторая обязательно в этот момент поднимается, в этом смысле они похожи на велотренажеры. Чем хороши такие степперы: они надежнее, проще по конструкции. Но при этом нагрузка выставляется одинаковая для обеих ног.

Степперы с независимым ходом педалей

Более универсальны, так как позволяют регулировать нагрузку для каждой ноги по отдельности. Это может пригодиться, если одна нога не полностью функционирует, например, в ходе восстановления после травмы. Как правило, такие тренажеры дороже.

Некоторые модели степперов снабжаются эспандерами, позволяющими тренировать мышцы рук и плечевого пояса.

Подведем итоги

Вы открываете страницу интернет-магазина и видите степперы, какой лучше? Возможно, вам стоит выбрать эллипсоид? А если все-таки степпер, то какой степпер надежнее — поворотный или классический?

  • Для степперов максимальный вес пользователя, как правило, ограничен 130 кг. Если вы весите больше, приобретайте профессиональные модели.
  • Если вы в целом не жалуетесь на свою физическую форму и вам просто нужен недорогой агрегат для утренней разминки — покупайте министеппер с механической нагрузкой. Лучше, если он будет поворотным и будет оснащен эспандерами — это сэкономит вам время на тренировку.
  • Если вы желаете контролировать свои тренировки, но бюджет не позволяет приобрести полноценный стационарный тренажер, купите министеппер с встроенным компьютером. Есть модели, которые по функциональности вполне приближаются к профессиональным. При этом ваш кошелек не испытает шоковой нагрузки.

Рейтинг статьи:

 рейтинг: 5  голосов: 7 

Хотите знать, что лучше: степпер или эллиптический тренажер? Мы подскажем | Статьи

Сегодня многие спортсмены, а в особенности представительницы прекрасного пола, задаются вопросом о том, что лучше: степпер или эллиптический тренажер? Однозначного ответа, по большому счету, на него не существует просто потому, что для каждого случая этот вопрос нужно рассматривать с индивидуальным подходом.

Сегодня рынок предлагает массу тренажеров, которые предназначены для занятий спортом в домашних условиях. При желании можно в совсем небольшом уголке комнаты оформить миниатюрный зал, и с его помощью развивать все группы мышц. И в этой статье мы рассмотрим плюсы и минусы самых распространенных из спортивных снарядов.

Чем отличается степпер от орбитрека (эллиптического тренажера)

Так чем отличается степпер от орбитрека (эллиптического тренажера) и в чем плюсы и минусы каждого из них. Рассмотрим для начала эллипс:

  • Он более габаритен. В небольших квартирах это играет существенную роль.
  • Такие тренажеры стоят немалую сумму денег. Иногда бюджет не позволяет взять ту модель, которая нравится.

Но:

  • С его помощью развиваются практически все мышцы тела.
  • Можно отлично регулировать нагрузки.
  • При желании можно переложить всю или большую часть нагрузки на руки, чтобы тренировать верхнюю часть тела.

Со степпером история немного другая:

  • Он очень невелик и его можно спрятать в шкаф или под кровать. В век урбанизации каждый квадратный метр на счету.
  • Его цена куда более привлекательна. Если вы хотите обзавестись тренажером для поддержания фигуры за небольшие деньги, степпер будет хорошей покупкой.

Но:

  • С его помощью можно тренировать только мышцы ног.

Как видите, причин задуматься над выбором не так мало, хотя, если вы не стеснены в пространстве квартиры и средствах, лучше выбрать эллипс из-за его универсальности. В принципе, если решать, что лучше: кардио твистер или эллиптический тренажер, ответы будут если не такими же, как и в прошлом сравнении, то очень близкими. Просто потому, что степпер и твистер очень схожи по принципу работы.

Какой тренажер лучше: эллиптический или велотренажер?

Еще один выбор, который возникает перед спортсменами – это какой тренажер лучше: эллиптический или велотренажер?

Так как плюсы и минусы орбитрека мы рассмотрели, поговорим сейчас о его оппоненте:

  • Велотренажер тренирует только ноги.
  • Он занимает больше места.

Но:

  • Для профессиональных велосипедистов нужны именно такие тренировки. К тому же дорогие модели оснащены имитатором определенных участков дороги, выбирать которые можно в интернете. Это очень полезно для того, чтобы знать трассу.
  • Орбитреки стоят немного дороже велотренажеров того же уровня.

Из вышесказанного можно вывести ответ на вопрос: «Эллипсоидный тренажер или велотренажер – что лучше?». Как видите, для поддержания себя в форме эллипс подходит больше, но для специализированных тренировок ничто не сможет заменить велотренажер.

Похожую параллель можно провести, если стать перед выбором: гребной тренажер или эллиптический тренажер? Логика размышлений та же, только в этот раз оппонент орбитрека используется для укрепления верхней части тела.

Поэтому если вам нужен хороший кардиотренажер, выбор его зависит только от личных ваших предпочтений и того, какие вы виды спорта больше любите.

Эллиптические тренажеры от компании ZonaSporta

Если вы желаете купить эллиптический тренажер в Москве или другом городе – обращайтесь в компанию ZonaSporta! Мы обязательно подскажем вам хорошую модель, выслушав ваши пожелания. Смело доверьте выбор нашему магазину, ведь мы уже давно занимаемся продажей спортинвентаря и знаем о нем все!

Звоните в компанию ZonaSporta и в том случае, если желаете купить эллиптический тренажер! Ваш заказ прибудет очень быстро!

Степпер: новый тренажер | fitzone

Один из самых подходящих для тренировок тренажеров – это степпер. Несмотря на свою простоту, он эффективен для разного рода тренировок – на выносливость, для укрепления сердечной мышцы, для коррекции веса, для наращивания мышечной массы и т.д.

Особенности степперов

Сам по себе степпер – это тренажер, который имитирует ходьбу с продвижением вверх, то есть упражнение, которое уже много лет считается наиболее эффективным и используется как для контроля веса, так и для укрепления мышц. Самые простые степперы – это компактные агрегаты, весящие всего несколько килограмм, поэтому они идеально подходят для использования дома. При этом большинство современных моделей не только позволяют регулировать нагрузку, имитируя поднятие в гору, но и дают возможность тренировать мышцы рук. В простых компактных моделях в комплекте идет эспандер, а более сложные имеют стойки с рычагами. Кроме того, современные тренажеры обладают встроенным компьютером, ведущим отсчет шагов, потерянных калорий, времени тренировки, и помогающий контролировать пульс.

Функции степперов

Как и беговая дорожка и эллиптический тренажер, степпер относится к категории кардиотренажеров, с помощью которых можно укрепить сердечно-сосудистую систему. Однако помимо этого они исполняют и массу других функций и подходят для пользователей с разным уровнем физического развития и разными задами тренировок. Степперы эффективны в достижении следующих целей: — коррекция веса; — снятие стресса и достижение расслабленного состояния; — улучшение кровоснабжения мышечной ткани и общее укрепление организма; — развитие мышц бедер и ягодиц, икроножных мышц, а также мышц плечевого пояса и рук при использовании эспандера или рычагов; — укрепление сердечной мышцы и тренировка легких. Зачастую степперы советуют использовать людям и сердечно-сосудистыми заболеваниями и заболеваниями ног (варикозное расширение вен, артриты, артрозы), перенесшим операции или тяжелые болезни для восстановления формы.

Недостатки степперов

Серьезных недостатков степперы и министепперы не имеют, но все-таки они обладают своими особенностями, из-за которых подходят далеко не всем. Так, не смотря на то, что данный тренажер рекомендуется для людей с рядом заболеваний, он все-таки не подходит, например, тем, кто страдает ортопедическими заболеваниями, тромбофлебитом, острыми стадиями радикулита или пневмонии. А при заболеваниях нижних дыхательных путей, гипертонии, диабете и некоторых других необходимо быть очень осторожным при тренировках. Министепперы многим не нравятся за то, что заниматься на них не очень удобно, к таким тренировкам необходимо привыкать. А большие степперы со стойками более дороги и занимают много места, поэтому им зачастую предпочитают беговые дорожки или эллиптические тренажеры. Но несмотря на эти факторы, министеппер все равно остается эффективным и недорогим тренажером, подходящим для любых целей тренировки.

Занятия на степпере

Шаг и поднятие по ступенькам, по мнению специалистов, наиболее эффективные и подходящие для людей с разным уровнем физической подготовки упражнения. А потому тренажеры, позволяющие имитировать такие движения, пользуются большим спросом, что можно в полной мере наблюдать в отношении степперов.

Принцип работы степпера

Самый простой министеппер представляет собой две педали с магнитной системой нагружения без поручней. Человек встает на эти педали и поочередно переносит вес с одной на другую, что позволяет имитировать поднятие в гору. Некоторые модели снабжены также эспандерами, чтобы параллельно можно было занимать и руки. Более удобные, но громоздкие модели обладают поручни, за которые можно держаться в процессе тренировки, что гораздо комфортнее. Некоторые из подобных тренажеров имеют рычаги, которые позволяют нагружать мышцы плечевого пояса и рук. В большинстве случаев степперы позволяют регулировать нагрузку, то есть степень противодействия нажатию на педали. Чем более высокий уровень физической подготовленности пользователя, тем выше нагрузка выставляется, и тем более эффективными становятся тренировки.

Особенности использования

Чтобы использовать степперы и министепперы с наибольшей эффективностью, необходимо знать технологию работы с ними. Не смотря на простоту данного тренажера, существует несколько упражнений, которые доступны для выполнения на нем: • Стандартный шаг – когда корпус держится прямо и осуществляется шаг, подобно тому, как происходит поднятие по лестнице. Можно выполнять быстрые движения, не выжимая педали до конца. Такое упражнение укрепляет мышцы бедер и ягодиц, помогает развивать выносливость. • «Полстопы» корпус держится прямо, но ноги стоят на педалях неполной стопой. Шаги делаются быстрые и маленькие без выжимания педалей до конца. Таким образом можно укрепить не только мышцы бедер, но и икры. • Тяжелый шаг – положение корпуса должно быть наклонным вперед («положение борца»), ноги на педалях стоят полной стопой и педали выжимаются полностью – медленно и с усилием. Таким упражнением можно повысить нагрузку на мышцы бедер и ягодиц. Как и при занятиях на любых других тренажерах, степпер требует разминки и разогрева мышц перед интенсивным его использованием. Чтобы добиться этого можно начать с низкой нагрузки и медленных движений, постепенно увеличивая темп.

Выбор нагрузки

Степпер позволяет тренировать сердечно-сосудистую систему и легкие, укреплять мышцы и повышать выносливость, сбрасывать вес и тонизировать организм. Однако для каждой задачи должен быть свой подход, позволяющий наиболее эффективно достичь ее. Так, чтобы повысить выносливость, можно чередовать все три упражнения, увеличивая нагрузку, выполняя их по 2-3 минуты, отслеживая пульс так, чтобы его интенсивность не превышала 90%. Для уменьшения веса и поддержания тонуса мышц выполняется тренировка при интенсивности пульса на уровне 55-70%. При этом частота и длительность тренировки зависят от уровня подготовленности. Для начинающего время занятия не должно превышать 15 минут по 2-3 раза в неделю, опытный пользователь может тренироваться по полчаса 3-4 раза в неделю.

Для чего нам нужен степпер?

От английского слова «step» (в переводе на русский — «шаг»)  произошло название тренажёра, который мы хотим сегодня обсудить. Степпер – тренажёр, имитирующий ходьбу по ступеням, которая активизирует мышцы ног, ягодиц и малого таза. Давайте разберемся, для чего нужен степпер и какие существуют разновидности данного тренажера.

Тренажёр степпер: польза

О применении тренажера «степпер» форум любого женского сообщества содержит массу отзывов. Можно сказать однозначно, что при правильных и регулярных тренировках на этом тренажёре вы получите положительные результаты и в плане здоровья, и в плане красоты и стройности.

Занятия на шаговом тренажёре – это прекрасная кардио-тренировка, повышающая выносливость и активно сжигающая калории. Ваши ножки и ягодицы будут подтянутыми и красивыми.

В борьбе с целлюлитом также эффективен и полезен степпер. Упражнения главное выполнять регулярно: 3-4 раза в неделю, и тогда вы забудете про это страшное словосочетание «апельсиновая корка».

Представим, что вы уже решили приобрести этот достаточно компактный тренажёр для дома, и осталось только определиться с  моделью. Для этого рассмотрим, каким может быть степпер. Отзывы о вашем выборе и результатах тренировок вы можете оставлять в комментариях к этой статье.

Виды степперов

Самым простым и малогабаритным вариантом считается механический степпер. Цена такого тренажёра наиболее демократичная. Он являет собой станок с двумя педалями, работающими за счёт гидравлических цилиндров.

Электромагнитный степпер – это модель, оснащённая датчиками и компьютером; работающая от сети. Такой вид степпера позволяет выбирать необходимый вам ритм тренировки. Конечно, такая модель будет гораздо больше по размеру и дороже по цене.

Различие степперов по типу движений

Классический степпер имитирует ходьбу по лестнице. Ударная нагрузка на коленные суставы во время тренировки на нём отсутствует или является почти незначительной по сравнению с реальной ходьбой по лестнице.

Балансировочный степпер развивает координацию и создаёт дополнительную нагрузку на пресс. Его педали движутся в результате смещения из стороны в сторону центра тяжести тренирующегося. Иногда этот вид степпера называют «рок-н-ролл». Если дополнить шагание на балансировочном степпере движениями корпуса и рук, то получится, что вы будто бы танцуете. Однако такие «танцы» на степпере возможны это лишь при должной сноровке, а в начале занятий надо будет хотя бы просто научиться держать равновесие.

Степпер поворотный имеет поворачивающийся держатель для рук. На таком тренажёре вы не просто шагаете, но ещё и поворачиваете корпус, создавая нагрузку для мышц пресса и спины.

Принцип действия степпера

Ещё одно различие этого шагового тренажёра – это принцип действия хода педалей.

Существуют степперы с зависимым ходом педалей. Они имеют сопряжённое крепление и при нажатии на одну педаль, автоматически поднимается вторая. Эти тренажёры недорогие, но они не позволяют регулировать уровень нагрузки. Усилить его можно лишь за счёт увеличения времени тренировки.

Степперы с независимым ходом педалей позволяют вам самостоятельно выбирать нагрузку. Вы можете даже выбрать параметры нагрузки для каждой ноги в отдельности!

Такие тренажёры снабжены дисплеем, который покажет вам время и скорость тренировки, а также позволит контролировать интенсивность шагов и пульс.

Надеемся, что теперь вы определились с выбором тренажера «степпер». Купить различные модели степперов, а также другие тренажеры для домашнего пользования вы можете в нашем магазине.

Что такое шаговый двигатель?

Шаговый двигатель — это бесщеточный синхронный электродвигатель, который преобразует цифровые импульсы в механическое вращение вала. Его нормальное движение вала состоит из дискретных угловых перемещений. движения практически одинаковой величины при управлении от последовательно переключаемого постоянного тока источник питания.

Шаговый двигатель — это устройство цифрового ввода-вывода. Он особенно хорошо подходит для приложение, в котором управляющие сигналы появляются в виде цифровых импульсов, а не аналоговых напряжений.Один цифровой импульс на привод шагового двигателя или преобразователь заставляет двигатель увеличивать один точный угол движения. По мере увеличения частоты цифровых импульсов шаговое движение меняется на непрерывное вращение.

Некоторые промышленные и научные применения шаговых двигателей включают робототехнику, станки, механизмы захвата и размещения, автоматизированные машины для резки и склеивания проволоки и даже точные устройства управления потоками.

Как работает шаговый двигатель?

Каждый оборот шагового двигателя делится на дискретное количество шагов, во многих случаях 200 шагов, и для каждого шага двигателю необходимо посылать отдельный импульс.Шаговый двигатель может делать только один шаг за раз, и каждый шаг одинакового размера.

Поскольку каждый импульс заставляет двигатель вращаться на точный угол, обычно 1,8 °, положением двигателя можно управлять без какого-либо механизма обратной связи. По мере увеличения частоты цифровых импульсов шаговое движение переходит в непрерывное вращение, при этом скорость вращения прямо пропорциональна частоте импульсов.

Шаговые двигатели используются каждый день как в промышленных, так и в коммерческих целях из-за их низкой стоимости, высокой надежности, высокого крутящего момента на низких скоростях и простой, прочной конструкции, которая работает практически в любых условиях.

  • Угол поворота двигателя пропорционален входному импульсу.
  • Двигатель имеет полный крутящий момент в состоянии покоя (если обмотки находятся под напряжением).
  • Точное позиционирование и повторяемость движения, так как хорошие шаговые двигатели имеют точность от 3 до 5% шага, и эта ошибка не суммируется от шага к шагу.
  • Отличная реакция на пуск / остановку / движение задним ходом.
  • Очень надежен, так как в двигателе нет контактных щеток. Следовательно, срок службы шагового двигателя просто зависит от срока службы подшипника.
  • Шаговые двигатели реагируют на цифровые входные импульсы, обеспечивая управление без обратной связи, что упрощает управление двигателем и снижает его стоимость.
  • Можно добиться синхронного вращения на очень низкой скорости с нагрузкой, непосредственно связанной с валом.
  • Может быть реализован широкий диапазон скоростей вращения, поскольку скорость пропорциональна частоте входных импульсов.

Выбор шагового двигателя и контроллера

Выбор шагового двигателя зависит от требований к крутящему моменту и скорости. Используйте кривую крутящий момент-скорость двигателя (указанную в технических характеристиках каждого привода), чтобы выбрать двигатель, который будет выполнять эту работу.

Каждый контроллер шагового двигателя в строке Omegamation показывает кривые крутящий момент-скорость для рекомендуемых двигателей этого привода.Если ваши требования к крутящему моменту и скорости могут быть удовлетворены с помощью нескольких шаговых двигателей, выберите контроллер, основанный на потребностях вашей системы движения — шаг / направление, автономный программируемый, аналоговые входы, микрошаговый — затем выберите один из рекомендуемых двигателей для этого контроллера. .

Список рекомендуемых двигателей основан на обширных испытаниях, проведенных производителем для обеспечения оптимальной производительности комбинации шагового двигателя и контроллера.

Типы шаговых двигателей

Существует три основных типа шаговых двигателей:
  • Активный ротор: шаговый двигатель с постоянными магнитами (PM)
  • Реактивный ротор: шаговый двигатель с регулируемым сопротивлением (VR)
  • Комбинация VR и PM: гибридный шаговый двигатель (HY)
Это бесщеточные электрические машины, которые вращаются под фиксированным углом. увеличивается при подключении к последовательно переключаемому постоянному току.При использовании переменного тока вращение по существу непрерывный.

Шаговый двигатель с постоянным магнитом

Этот тип шагового двигателя имеет ротор с постоянными магнитами. Статор может быть аналогичен традиционному 2- или 3-фазному индукционному двигатель или сконструированный аналогично штампованному двигателю. Последний является самый популярный тип шагового двигателя.

a.) Обычный постоянный магнит. На рисунке 1 показана схема обычного шаговый двигатель с ротором с постоянными магнитами.2-х фазная обмотка проиллюстрировано. На рисунке 1а показана фаза А. запитан с положительной клеммы «A». Поле находится под углом 0 °. Когда катушка намотана, как показано, северный полюс ротор также находится на 0 °.

Вал совершает один оборот за каждый полный оборот электромагнитного поля в этом двигателе. На рисунке 2 показан тот же шаговый двигатель с обеими обмотками под напряжением. Важный разница здесь в том, что результирующее электромагнитное поле находится между два полюса. На рисунке 2 поле переместилось на 45 ° от поле на Рисунке 1.

Как и в схеме однофазного включения, вал завершает один оборот за каждый полный оборот электромагнитного поля. Должно быть очевидно, что этот мотор может полушага; т.е. шаг в малом шаг шага. Это возможно за счет сочетания подачи питания показано на Рисунке 1, с показанным на Рисунке 2. На Рисунке 3 показаны схемы Шаговый двигатель с постоянными магнитами с полушаговым движением ротора.

Как и на предыдущих схемах, ротор и вал движутся через тот же угол, что и поле. Обратите внимание, что каждый шаг приводил к повороту на 45 °. вместо 90 ° на предыдущей диаграмме. Шаговый двигатель с постоянным магнитом может быть намотан бифилярным двигателем. обмотки, чтобы избежать необходимости обратной полярности обмотка. На рисунке 4 показана бифилярная обмотка при В таблице IV показана последовательность включения.

Бифилярные обмотки проще переключать с помощью транзисторного контроллера. Требуется меньше переключающих транзисторов. б.) Штампованные или штабелированные шаговые двигатели с постоянными магнитами. В самый популярный тип шагового двигателя с постоянным магнитом — это так называется штампованным типом, зубчатым когтем, листовым металлом, жестяной банкой или просто невысокая стоимость мотора. Этот мотор сложно проиллюстрировать наглядно из-за того, как он построен.

Этот двигатель имеет пару катушек, окружающих ротор с постоянными магнитами. Катушки заключены в корпус из мягкого железа с зубьями на внутри реагирует с ротором.Каждый корпус катушки имеет одинаковый количество зубьев как количество полюсов ротора. Корпуса радиально смещены друг относительно друга на половину шага зубьев.

Шаговый двигатель с регулируемым сопротивлением

Этот тип шагового двигателя имеет электромагнитный статор с ротор из магнитомягкого железа с зубьями и пазами, подобными ротору ротор индукторного генератора. В то время как двигатели с постоянными магнитами в основном Для 2-фазных машин, для двигателей VR требуется не менее 3-х фаз. Большинство VR шаговые двигатели имеют 3 или 4 фазы, хотя 5-фазные двигатели VR имеется в наличии.

В шаговом двигателе VR поле движется с другой скоростью, чем ротор.

Обратите внимание, что катушка фазы A имеет два южные полюса и отсутствие северных полюсов для пути возврата потока. Вы можете отдохнуть уверен, что будет один. Поток вернется через путь наименьшего сопротивления, а именно через пары полюсов, которые являются ближайшими до двух зубьев ротора. Это зависит от положения ротора. Поток индуцирует напряжение в катушках, намотанных на полюс. Это вызывает ток в обмотка, замедляющая ротор.Величина тока определяется напряжение на катушке. Катушка с диодным зажимом будет иметь больше ток больше, чем у резисторного диода или обмотки с зажимом стабилитрона.

Гибридный шаговый двигатель

Этот тип двигателя часто называют постоянным магнитом. мотор. Он использует комбинацию постоянного магнита и переменного структура сопротивления. Его конструкция аналогична конструкции Индукционный двигатель.

Ротор имеет два концевые детали (хомуты) с выступающими полюсами, расположенными на одинаковом расстоянии, но радиально смещены друг от друга на половину шага зубьев.Круглый перманент магнит разделяет их. Ярма имеют практически равномерный поток. противоположной полярности. Статор изготовлен из многослойной стали. Некоторые двигатели имеют 4 катушки. в двух группах по 2 катушки последовательно. Одна пара катушек называется фазой A и другая фаза B.

Число полных шагов на оборот может быть определено из по следующей формуле:

SPR = NR x Ø

Где: SPR = количество шагов на оборот

NR = общее количество зубьев ротора (всего для оба хомута)

Ø = количество фаз двигателя

или: NR = SPR / Ø

Они сконструированы с полюсами статора с несколькими зубьями и ротором с постоянными магнитами.Стандартные гибридные двигатели имеют 200 зубцов ротора и вращаются с шагом 1,8 °. Поскольку они демонстрируют высокий статический и динамический крутящий момент и работают с очень высокой частотой шагов, гибридные шаговые двигатели используются в широком спектре коммерческих приложений, включая компьютерные дисководы, принтеры / плоттеры и проигрыватели компакт-дисков.

Пошаговые режимы

«Шаговые режимы» шагового двигателя включают полный, половинный и микрошаговый. Тип выхода шагового режима любого шагового двигателя зависит от конструкции контроллера.Omegamation ™ предлагает приводы с шаговыми двигателями с переключаемыми полными и полушаговыми режимами, а также микрошаговые приводы с выбираемым переключателем или программно выбираемым разрешением.
Полный шаг
Стандартные гибридные шаговые двигатели имеют 200 зубцов ротора или 200 полных шагов на оборот вала двигателя. Разделение 200 шагов на 360 ° вращения равняется полному углу шага 1,8 °. Обычно режим полного шага достигается за счет подачи питания на обе обмотки при попеременном реверсировании тока.По сути, один цифровой импульс от драйвера эквивалентен одному шагу.
Полушаг
Полушаг просто означает, что шаговый двигатель вращается со скоростью 400 шагов за оборот. В этом режиме запитывается одна обмотка, а затем поочередно запитываются две обмотки, в результате чего ротор вращается на половину расстояния, или 0,9 °. Хотя он обеспечивает примерно на 30% меньше крутящего момента, полушаговый режим обеспечивает более плавное движение, чем полушаговый режим.
Microste
Микрошаговый двигатель — это относительно новая технология шагового двигателя, которая регулирует ток в обмотке двигателя до такой степени, что дополнительно подразделяет количество позиций между полюсами.Микрошаговые приводы

Omegamation способны разделять полный шаг (1,8 °) на 256 микрошагов, что дает 51 200 шагов на оборот (0,007 ° / шаг). Микрошаг обычно используется в приложениях, требующих точного позиционирования и более плавного движения в широком диапазоне скоростей. Как и полушаговый режим, микрошаговый режим обеспечивает примерно на 30% меньше крутящего момента, чем полушаговый режим.

Управление линейным шаговым двигателем
Вращательное движение шагового двигателя может быть преобразовано в линейное движение с помощью системы привода ходового винта / червячной передачи (см. Рисунок B).Шаг или шаг ходового винта — это линейное расстояние, пройденное за один оборот винта. Если шаг равен одному дюйму на оборот и имеется 200 полных шагов на оборот, то разрешение системы ходового винта составляет 0,005 дюйма на шаг. Еще более высокое разрешение возможно при использовании шагового двигателя / системы привода в микрошаговом режиме. Серия

и параллельное соединение

Есть два способа подключения шагового двигателя: последовательно или параллельно.Последовательное соединение обеспечивает высокую индуктивность и, следовательно, больший крутящий момент на низких скоростях. Параллельное соединение снижает индуктивность, что приводит к увеличению крутящего момента на более высоких скоростях.

Контроллер шагового двигателя Обзор технологии

Драйвер получает сигналы шага и направления от индексатора или контроллера шагового двигателя и преобразует их в электрические сигналы для запуска шагового двигателя. На каждую ступень вала двигателя требуется один импульс.

В полношаговом режиме со стандартным 200-шаговым двигателем требуется 200 шаговых импульсов для совершения одного оборота. Скорость вращения прямо пропорциональна частоте импульсов. Некоторые системы управления имеют встроенный генератор, который позволяет использовать внешний аналоговый сигнал или джойстик для установки скорости двигателя.

Скорость и крутящий момент шагового двигателя основаны на протекании тока от драйвера к обмотке двигателя. Фактор, который препятствует потоку или ограничивает время, необходимое току для возбуждения обмотки, известен как индуктивность.Влияние индуктивности, большинство типов цепей управления предназначены для подачи большего количества напряжения, чем номинальное напряжение двигателя.

Чем выше выходное напряжение контроллера, тем выше уровень крутящего момента в зависимости от скорости. Как правило, выходное напряжение драйвера (напряжение на шине) должно быть в 5-20 раз выше номинального напряжения двигателя. Чтобы защитить двигатель от повреждения, привод шагового двигателя должен быть ограничен по току до номинального тока шагового двигателя.

Обзор контроллера шагового двигателя

Индексатор, или контроллер шагового двигателя, предоставляет драйверу выходные данные шага и направления. Для большинства приложений требуется, чтобы индексатор управлял и другими функциями управления, включая ускорение, замедление, количество шагов в секунду и расстояние. Индексатор также может взаимодействовать со многими другими внешними сигналами и управлять ими.

Связь с системой управления осуществляется через последовательный порт RS-232 и в некоторых случаях порт RS485.В любом случае контроллер шагового двигателя способен принимать высокоуровневые команды от главного компьютера и генерировать необходимые импульсы шага и направления для драйвера.

Контроллер включает в себя дополнительные входы / выходы для контроля входов от внешних источников, таких как пусковой, толчковый, исходный или концевой выключатель. Он также может запускать другие функции машины через выходные контакты ввода / вывода.

Автономная работа

В автономном режиме контроллер может работать независимо от главного компьютера.После загрузки в энергонезависимую память программы движения можно запускать с различных типов операторских интерфейсов, таких как клавиатура или сенсорный экран, или с переключателя через вспомогательные входы / выходы.

Автономная система управления шаговым двигателем часто комплектуется драйвером, источником питания и дополнительной обратной связью энкодера для приложений «замкнутого контура», требующих обнаружения опрокидывания и точной компенсации положения двигателя.

Многоосевое управление

Многие приложения для управления движением требуют управления более чем одним шаговым двигателем.В таких случаях доступен контроллер многоосного шагового двигателя. К сетевому концентратору HUB 444, например, может быть подключено до четырех шаговых приводов, причем каждый привод подключен к отдельному шаговому двигателю. Сетевой концентратор обеспечивает согласованное перемещение приложений, требующих высокой степени синхронизации, например круговой или линейной интерполяции.

Что такое шаговый двигатель и контроллеры? — Omega Engineering

Шаговый двигатель — это бесщеточный синхронный электродвигатель, который преобразует цифровые импульсы в механическое вращение вала.Каждый оборот шагового двигателя делится на дискретное количество шагов, во многих случаях 200 шагов, и для каждого шага двигателю необходимо посылать отдельный импульс. Шаговый двигатель может делать только один шаг за раз, и каждый шаг одинакового размера. Поскольку каждый импульс заставляет двигатель вращаться на точный угол, обычно 1,8 °, положением двигателя можно управлять без какого-либо механизма обратной связи. По мере увеличения частоты цифровых импульсов шаговое движение переходит в непрерывное вращение, при этом скорость вращения прямо пропорциональна частоте импульсов.Шаговые двигатели используются каждый день как в промышленных, так и в коммерческих целях из-за их низкой стоимости, высокой надежности, высокого крутящего момента на низких скоростях и простой и прочной конструкции, которая работает практически в любых условиях.

Преимущества шагового двигателя

Преобразование нелинейного входного сигнала в линейный выходной сигнал. Это обычное дело для сигналов термопар.

Угол поворота двигателя пропорционален входному импульсу.
Двигатель имеет полный крутящий момент в состоянии покоя (если обмотки находятся под напряжением).
Точное позиционирование и повторяемость движения, поскольку хорошие шаговые двигатели имеют точность от 3 до 5% шага, и эта ошибка не суммируется от одного шага к другому.
Отличная реакция на пуск / остановку / движение задним ходом.
Очень надежен, так как в двигателе нет контактных щеток. Следовательно, срок службы шагового двигателя просто зависит от срока службы подшипника.
Шаговые двигатели, реагирующие на импульсы цифрового входа, обеспечивают управление без обратной связи, что упрощает управление двигателем и снижает его стоимость.
Можно добиться синхронного вращения на очень низкой скорости с нагрузкой, непосредственно связанной с валом.
Может быть реализован широкий диапазон скоростей вращения, поскольку скорость пропорциональна частоте входных импульсов.

Типы шаговых двигателей

Существует три основных типа шаговых двигателей: с регулируемым сопротивлением, с постоянным магнитом и гибридные. Это обсуждение будет сосредоточено на гибридном двигателе, поскольку эти шаговые двигатели сочетают в себе лучшие характеристики двигателей с переменным сопротивлением и двигателей с постоянными магнитами.Они сконструированы с полюсами статора с несколькими зубьями и ротором с постоянными магнитами. Стандартные гибридные двигатели имеют 200 зубцов ротора и вращаются с шагом 1,8 °. Поскольку они демонстрируют высокий статический и динамический крутящий момент и работают с очень высокой частотой шагов, гибридные шаговые двигатели используются в широком спектре коммерческих приложений, включая компьютерные дисководы, принтеры / плоттеры и проигрыватели компакт-дисков. Некоторые промышленные и научные применения шаговых двигателей включают робототехнику, станки, механизмы захвата и размещения, автоматизированные машины для резки и склеивания проволоки и даже точные устройства контроля жидкости.

Пошаговые режимы

«Шаговые режимы» шагового двигателя включают полный, половинный и микрошаговый. Тип выхода шагового режима любого шагового двигателя зависит от конструкции драйвера. OMEGA предлагает приводы с шаговыми двигателями с переключаемым полным и половинным шагами, а также микрошаговые приводы с переключаемым или программным выбором разрешения.

ПОЛНЫЙ ШАГ
Стандартные гибридные шаговые двигатели имеют 200 зубцов ротора или 200 полных шагов на один оборот вала двигателя.Разделение 200 шагов на 360 ° вращения равняется полному углу шага 1,8 °. Обычно режим полного шага достигается за счет подачи питания на обе обмотки при попеременном реверсировании тока. По сути, один цифровой импульс от драйвера эквивалентен одному шагу.

HALF STEP
Полушаг просто означает, что шаговый двигатель вращается со скоростью 400 шагов за оборот. В этом режиме запитывается одна обмотка, а затем поочередно запитываются две обмотки, в результате чего ротор вращается на половину расстояния, или 0. 9 °. Хотя он обеспечивает примерно на 30% меньше крутящего момента, полушаговый режим обеспечивает более плавное движение, чем полушаговый режим.

MICROSTEP
Microstepping — это относительно новая технология шагового двигателя, которая регулирует ток в обмотке двигателя до степени, которая дополнительно разделяет количество положений между полюсами. Приводы OMEGA с микрошагом способны разделять полный шаг (1,8 °) на 256 микрошагов, что дает 51 200 шагов на оборот (0,007 ° / шаг). Микрошаг обычно используется в приложениях, требующих точного позиционирования и более плавного движения в широком диапазоне скоростей.Как и полушаговый режим, микрошаговый режим обеспечивает примерно на 30% меньше крутящего момента, чем полушаговый режим.

Управление линейным движением
Вращательное движение шагового двигателя может быть преобразовано в линейное движение с помощью системы привода ходового винта / червячной передачи. Шаг или шаг ходового винта — это линейное расстояние, пройденное за один оборот винта. Если шаг равен одному дюйму на оборот, и есть 200 полных шагов на оборот, то разрешение системы ходового винта равно 0.005 дюймов на шаг. Еще более высокое разрешение возможно при использовании шагового двигателя / системы привода в микрошаговом режиме.

Серия

в сравнении с параллельным подключением Существует два способа подключения шагового двигателя: последовательно или параллельно. Последовательное соединение обеспечивает высокую индуктивность и, следовательно, больший крутящий момент на низких скоростях. Параллельное соединение снижает индуктивность, что приводит к увеличению крутящего момента на более высоких скоростях.

Обзор технологии драйвера

Драйвер шагового двигателя получает сигналы шага и направления от индексатора или системы управления и преобразует их в электрические сигналы для запуска шагового двигателя.На каждую ступень вала двигателя требуется один импульс. В полношаговом режиме со стандартным 200-шаговым двигателем требуется 200 шаговых импульсов для совершения одного оборота. Скорость вращения прямо пропорциональна частоте импульсов. Некоторые драйверы имеют встроенный генератор, который позволяет использовать внешний аналоговый сигнал или джойстик для установки скорости двигателя.

Скорость и крутящий момент шагового двигателя основаны на протекании тока от привода к обмотке двигателя.Фактор, который препятствует потоку или ограничивает время, необходимое току для возбуждения обмотки, известен как индуктивность. Из-за влияния индуктивности большинство типов схем драйвера предназначены для подачи большего количества напряжения, чем номинальное напряжение двигателя. Чем выше выходное напряжение от драйвера, тем выше уровень крутящего момента в зависимости от скорости. Как правило, выходное напряжение драйвера (напряжение на шине) должно быть в 5-20 раз выше номинального напряжения двигателя. Чтобы защитить двигатель от повреждения, привод шагового двигателя должен быть ограничен по току до номинального тока шагового двигателя.

Обзор индексатора

Индексатор или контроллер предоставляет драйверу выходные данные шага и направления. Для большинства приложений требуется, чтобы индексатор управлял и другими функциями управления, включая ускорение, замедление, количество шагов в секунду и расстояние. Индексатор также может взаимодействовать со многими другими внешними сигналами и управлять ими.

Связь с индексатором осуществляется через последовательный порт RS-232 и в некоторых случаях порт RS485. В любом случае индексатор способен принимать высокоуровневые команды от главного компьютера и генерировать необходимые импульсы шага и направления для драйвера.

Индексатор включает в себя вспомогательные входы / выходы для контроля входов от внешних источников, таких как переключатель Go, Jog, Home или Limit. Он также может запускать другие функции машины через выходные контакты ввода / вывода.

Автономная работа

В автономном режиме индексатор может работать независимо от главного компьютера. После загрузки в энергонезависимую память программы движения можно запускать с различных типов операторских интерфейсов, таких как клавиатура или сенсорный экран, или с переключателя через вспомогательные входы / выходы. Автономная система управления шаговым двигателем часто комплектуется драйвером, источником питания и дополнительной обратной связью энкодера для приложений «замкнутого контура», требующих обнаружения опрокидывания и точной компенсации положения двигателя.

Многоосевое управление


в таких случаях доступна многокоординатная система управления. К сетевому концентратору HUB 444, например, может быть подключено до четырех шаговых приводов, причем каждый привод подключен к отдельному шаговому двигателю. Сетевой концентратор обеспечивает согласованное перемещение приложений, требующих высокой степени синхронизации, например круговой или линейной интерполяции.

Выбор шагового двигателя и привода

Выбор шагового двигателя зависит от требований к крутящему моменту и скорости. Используйте кривую крутящий момент-скорость двигателя (указанную в технических характеристиках каждого привода), чтобы выбрать двигатель, который будет выполнять эту работу. Каждый шаговый привод в линейке OMEGA показывает кривые крутящий момент-скорость для рекомендуемых двигателей. Если ваши требования к крутящему моменту и скорости могут быть удовлетворены с помощью нескольких шаговых двигателей, выберите привод на основе потребностей вашей системы движения — шаг / направление, автономный программируемый, аналоговые входы, микрошаговый — затем выберите один из рекомендуемых двигателей для этого привода .Список рекомендуемых двигателей основан на обширных испытаниях, проведенных производителем для обеспечения оптимальной производительности шагового двигателя и комбинации привода.

Выберите шаговый двигатель, подходящий для вашего приложения

Шаг и направление
Эти приводы шаговых двигателей принимают импульсы шага и сигналы направления / разрешения от контроллера, такого как ПЛК или ПК. Каждый шаговый импульс заставляет двигатель вращаться на определенный угол, а частота импульсов определяет скорость вращения. Сигнал направления определяет направление вращения (по часовой или против часовой стрелки), а разрешающий сигнал включает или выключает двигатель.

Узнать больше

Осциллятор
Приводы шаговых двигателей со встроенным цифровым генератором принимают аналоговый вход или джойстик для управления скоростью. Эти системы обычно используются в приложениях, требующих непрерывного движения, а не управления положением, таких как миксеры, блендеры и дозаторы.

Узнать больше

Автономный программируемый
Все эти шаговые приводы можно запрограммировать для автономной работы; Программа управления движением создается с помощью простого высокоуровневого программного интерфейса с перетаскиванием (входит в комплект бесплатно), затем загружается и запускается при включении питания.Программа управления движением обычно ожидает ввода, такого как замыкание переключателя или нажатие кнопки, перед выполнением запрограммированного движения.

Узнать больше

Высокопроизводительные шаговые двигатели
Эти приводы шаговых двигателей предлагают расширенные функции, такие как самодиагностика, защита от сбоев, автонастройка, сглаживание пульсаций крутящего момента, сглаживание командных сигналов и антирезонансные алгоритмы. Некоторые приводы программируются отдельно, в то время как другие предлагают ступенчатые / направляющие и аналоговые входы.Высокопроизводительные приводы обеспечат наилучшую производительность вашей системы управления движением.

Узнать больше Техническое обучение Техническое обучение Просмотреть эту страницу на другом языке или в другом регионе

Основы шагового двигателя

Каждый двигатель преобразует мощность.Электродвигатели преобразуют электричество в движение. Шаговые двигатели преобразуют электричество во вращение. Шаговый двигатель не только преобразует электрическую энергию во вращение, но и может очень точно регулировать, насколько далеко он будет вращаться и насколько быстро.

Шаговые двигатели названы так потому, что каждый импульс электричества поворачивает двигатель на один шаг. Шаговые двигатели управляются драйвером, который посылает в двигатель импульсы, заставляя его вращаться. Количество импульсов, которые вращает двигатель, равно количеству импульсов, подаваемых на драйвер.Двигатель будет вращаться со скоростью, равной частоте тех же импульсов.

Шаговые двигатели очень просты в управлении. Большинство драйверов ищут импульсы 5 вольт, которые как раз и являются уровнем напряжения большинства интегральных схем. Вам просто нужно разработать схему для вывода импульсов или использовать один из генераторов импульсов ORIENTAL MOTOR.

Одна из самых замечательных особенностей шаговых двигателей — их способность очень точно позиционироваться. Это будет подробно рассмотрено позже.Шаговые двигатели не идеальны, всегда есть небольшие неточности. Стандартные шаговые двигатели ORIENTAL MOTOR имеют точность ± 3 угловых минуты (0,05 °). Однако замечательной особенностью шаговых двигателей является то, что эта ошибка не накапливается от шага к шагу. Когда стандартный шаговый двигатель перемещается на один шаг, он будет перемещаться на 1,8 ° ± 0,05 °. Если один и тот же двигатель совершит один миллион шагов, он переместится на 1 800 000 ° ± 0,05 °. Ошибка не накапливается.

Шаговые двигатели могут быстро реагировать и ускоряться.У них низкая инерция ротора, что позволяет быстро набирать обороты. По этой причине шаговые двигатели идеально подходят для коротких быстрых перемещений.

Система шагового двигателя

На схеме ниже показана типичная система на основе шагового двигателя. Все эти части должны присутствовать в той или иной форме. Производительность каждого компонента будет влиять на другие.

Первый компонент — это компьютер или ПЛК. Это мозг системы. Компьютер не только управляет системой шагового двигателя, но и остальной частью машины.Он может поднять лифт или продвинуть конвейер. Он может быть таким сложным, как ПК или ПЛК, или таким простым, как кнопка оператора.

Вторая часть — это индексатор или карта ПЛК. Это говорит шаговому двигателю, что делать. Он будет выдавать правильное количество импульсов, которыми будет двигаться двигатель, и изменяет частоту, чтобы двигатель ускорялся, работал со скоростью, а затем замедлялся.

Это может быть отдельный компонент, такой как индексатор ORIENTAL MOTOR SG8030 или карта генератора импульсов, которая вставляется в ПЛК.Форма несущественна, но она должна присутствовать, чтобы двигатель мог двигаться.

Следующие четыре блока составляют драйвер двигателя. Логика управления фазой принимает импульсы от индексатора и определяет, какая фаза двигателя должна быть запитана. Фазы должны быть запитаны в определенной последовательности, и логика управления фазами позаботится об этом. Источник питания логики — это источник низкого уровня, который питает микросхемы в драйвере. Это зависит от набора микросхем или конструкции приложения, но большинство логических блоков находятся в диапазоне 5 В. Источник питания двигателя — это напряжение питания для питания двигателя. Этот уровень напряжения обычно находится в диапазоне 24 В постоянного тока, но может быть намного выше. Наконец, усилитель мощности — это набор транзисторов, который позволяет току питать фазы. Они постоянно включаются и выключаются, чтобы двигатель двигался в правильной последовательности.

Все эти компоненты дадут команду двигателю переместить нагрузку. Груз может быть ходовым винтом, диском или конвейером.

Типы шаговых двигателей

В настоящее время существует три основных типа шаговых двигателей.

  • Переменное сопротивление (VR)
  • Постоянный магнит (PM)
  • Гибрид

ORIENTAL MOTOR производит только гибридные шаговые двигатели.

Шаговые двигатели с регулируемым сопротивлением имеют зубцы на роторе и статоре, но не имеют магнита. Следовательно, у него нет фиксирующего момента. У постоянного магнита есть магнит для ротора, но нет зубцов. Обычно магнит с постоянными магнитами имеет грубые углы ступенек, но зато имеет фиксирующий момент.

Гибридные шаговые двигатели сочетают в себе магнит постоянного магнита и зубцы двигателей с регулируемым сопротивлением.Магнит намагничен в осевом направлении, что означает, что на диаграмме справа верхняя половина является северным полюсом, а нижняя половина — южным. На магните две зубчатые чашки ротора с 50 зубьями. Две чашки смещены на 3,6 °, так что если мы посмотрим вниз на ротор между двумя зубцами чашки северного полюса, мы увидим один зуб на чашке южного полюса прямо посередине.

Эти двигатели имеют двухфазную конструкцию, с 4 полюсами на фазу. Полюса, расположенные под углом 90 ° друг к другу, составляют каждую фазу.Каждая фаза намотана так, что полюс 180 ° имеет одинаковую полярность, а те, что разнесены на 90 °, имеют противоположную полярность. Если бы ток в этой фазе поменял местами, изменилась бы и полярность. Это означает, что мы можем сделать любой полюс статора либо северным, либо южным полюсом.

Предположим, что на схеме полюса на 12 и 6 часах являются северными полюсами, а полюса на 3 и 9 часах — южными. Когда мы включаем фазу A, 12 и 6 притягивают южный полюс магнитного ротора, а 3 и 9 притягивают северный полюс ротора.Если посмотреть с одного конца, мы увидим, что зубья ротора совпадают с зубцами 12 и 6, а зубцы 3 и 9 будут прямо посередине. Если бы мы посмотрели с противоположного конца, зубцы ротора северного полюса были бы точно выровнены с 3 и 9, а зубцы на 12 и 6 были бы прямо посередине. В зависимости от того, в каком направлении мы хотим двигаться, мы могли бы активировать либо полюса 2 и 7 как северные полюса, либо полюса 11 и 5 как северные полюса. Вот где драйвер необходим для определения чередования фаз.(Щелкните изображение, чтобы начать анимацию).

На роторе 50 зубьев. Шаг между зубьями 7,2 °. Во время движения двигателя некоторые зубья ротора не совмещены с зубьями статора на 3/4 шага зуба, 1/2 шага зуба и 1/4 шага зуба. Когда мотор делает шаг, он выбирает самый простой путь, поскольку 1/4 от 7,2 ° составляет 1,8 °, мотор перемещается на 1,8 ° каждый шаг.

Наконец, крутящий момент и точность зависят от числа полюсов (зубцов). Чем больше полюса, тем лучше крутящий момент и точность.ORIENTAL MOTOR предлагает шаговые двигатели «высокого разрешения». Эти двигатели имеют половину шага зубьев нашего стандартного двигателя. Ротор имеет 100 зубцов, поэтому угол между зубьями составляет 3,6 °. Когда двигатель перемещается на 1/4 шага зуба, он перемещается на 0,9 °. Разрешение наших моделей с «высоким разрешением» вдвое больше, чем у стандартных моделей: 400 шагов на оборот по сравнению с 200 шагами на оборот.

Меньшие углы шага означают меньшую вибрацию, поскольку мы не уходим так далеко с каждым шагом.

Конструкция

На рисунке ниже показано поперечное сечение 5-фазного шагового двигателя.Шаговый двигатель состоит в основном из двух частей: статора и ротора. Ротор, в свою очередь, состоит из трех компонентов: чашки ротора 1, чашки ротора 2 и постоянного магнита. Ротор намагничен в осевом направлении, так что, например, если чашка 1 ротора поляризована на север, чашка 2 ротора будет поляризована на юг.

Статор имеет 10 магнитных полюсов с небольшими зубцами, каждый из которых имеет обмотку.

Каждая обмотка подключена к обмотке противоположного полюса, так что оба полюса намагничиваются с одинаковой полярностью, когда ток проходит через пару обмоток.(Пропускание тока через данную обмотку намагничивает противоположную пару полюсов с одинаковой полярностью, то есть на север или юг.)

Противоположная пара полюсов составляет одну фазу. Поскольку имеется 10 магнитных полюсов или пять фаз, в этом конкретном двигателе называется 5-фазный шаговый двигатель.

По внешнему периметру каждого ротора имеется 50 зубцов, причем зубья чашки 1 и 2 ротора механически смещены друг относительно друга на половину шага зубьев.

Скорость-Крутящий момент

Очень важно, чтобы вы знали, как считывать кривую скорость-крутящий момент, поскольку она расскажет нам, что двигатель может и чего не может.Кривые скорость-крутящий момент представляют данный двигатель и данный драйвер. Когда двигатель работает, его крутящий момент зависит от типа привода и напряжения. Один и тот же двигатель может иметь совершенно другую кривую скорость-крутящий момент при использовании с другим приводом.

ORIENTAL MOTOR дает кривые скорость-крутящий момент для справки. Если двигатель используется с аналогичным приводом, с аналогичным напряжением и аналогичным током, вы должны получить аналогичную производительность. См. Интерактивную кривую «скорость-крутящий момент» ниже:

Считывание кривой скорость-крутящий момент

  • Удерживающий момент
    Величина крутящего момента, который двигатель создает в состоянии покоя, когда через его обмотки протекает номинальный ток.
  • Область пуска / останова
    Значения, при которых двигатель может мгновенно запускаться, останавливаться или реверсировать.
  • Вращающий момент
    Значения крутящего момента и скорости, которые двигатель может запускать, останавливать или реверсировать синхронно с входными импульсами.
  • Момент отрыва
    Значения крутящего момента и скорости, которые двигатель может работать синхронно с входными фазами. Максимальные значения, которые двигатель может обеспечить без остановки.
  • Максимальная пусковая скорость
    Максимальная скорость, с которой двигатель может запускаться, измеренная без нагрузки.
  • Максимальная рабочая скорость
    Максимальная скорость, на которой будет работать двигатель, измеренная без нагрузки.

Для того, чтобы работать в зоне между втягиванием и вытягиванием, двигатель должен сначала запуститься в зоне пуска / останова.Затем частота импульсов увеличивается до тех пор, пока не будет достигнута желаемая скорость. Для остановки скорость двигателя снижается до тех пор, пока она не станет ниже кривой крутящего момента втягивания.

Крутящий момент пропорционален току и количеству витков провода. Если мы хотим увеличить крутящий момент на 20%, мы должны увеличить ток примерно на 20%. Точно так же, если мы хотим уменьшить крутящий момент на 50%, уменьшите ток на 50%.

Из-за магнитного насыщения нет преимуществ в увеличении тока более чем в 2 раза от номинального.В этот момент увеличение тока не приведет к увеличению крутящего момента. При токе примерно в 10 раз превышающем номинальный, вы рискуете размагнитить ротор.

Все наши двигатели имеют изоляцию класса B и могут выдерживать температуру 130 ° C до того, как изоляция ухудшится. Если мы допускаем разницу температур 30 ° внутри и снаружи, температура корпуса не должна превышать 100 ° C.

Индуктивность влияет на крутящий момент на высокой скорости. Индуктивность — это причина, по которой двигатели не обладают высоким крутящим моментом до бесконечности. Каждая обмотка двигателя имеет определенное значение индуктивности и сопротивления. Индуктивность в генри, разделенная на сопротивление в омах, дает нам значение в секундах. Это количество секунд (постоянная времени) — время, необходимое катушке для зарядки до 63% от номинального значения. Если двигатель рассчитан на 1 ампер, через 1 постоянную времени катушка будет на 0,63 ампера. Примерно через 4 или 5 постоянных времени катушка будет иметь ток до 1 ампер. Поскольку крутящий момент пропорционален току, если ток заряжается только до 63%, двигатель будет иметь только около 63% своего крутящего момента после 1 постоянной времени.

На малых оборотах это не проблема. Ток может входить и выходить из катушек достаточно быстро, поэтому двигатель имеет номинальный крутящий момент. Однако на высоких скоростях ток не может пройти достаточно быстро, пока не переключится следующая фаза. Крутящий момент снижен.

Напряжение драйвера играет большую роль в быстродействии. Чем выше отношение напряжения привода к напряжению двигателя, тем лучше быстродействие. Высокое напряжение заставляет ток течь в обмотки быстрее, чем упомянутые выше 63%.

Вибрация

Когда шаговый двигатель делает переход от одного шага к другому, ротор не останавливается немедленно. ротор фактически проходит конечное положение, отводится назад, проходит конечное положение в противоположном направлении и продолжает двигаться вперед и назад, пока, наконец, не остановится (см. интерактивную диаграмму ниже). Мы называем это «звонком», и он происходит при каждом шаге двигателя. Подобно банджи-шнуру, импульс переносит ротор за точку остановки, затем он «подпрыгивает» назад и вперед, пока, наконец, не остановится.Однако в большинстве случаев двигатель получает команду перейти к следующему этапу, прежде чем он остановится.

На графиках ниже показан звон при различных условиях нагрузки. В ненагруженном состоянии мотор сильно звенит. Сильный звонок означает сильную вибрацию. Двигатель часто останавливается, если он не нагружен или слегка нагружен, потому что вибрация настолько велика, что теряется синхронность. При тестировании шагового двигателя обязательно добавляйте нагрузку.

Два других графика показывают двигатель с нагрузкой.Правильная загрузка двигателя сгладит его работу. Нагрузка должна требовать от 30% до 70% крутящего момента, который может создать двигатель, а отношение инерции нагрузки к инерции ротора должно быть от 1: 1 до 10: 1. Для более коротких и быстрых ходов соотношение должно быть от 1: 1 до 3: 1.

Специалист по применению

ORIENTAL MOTOR и инженеры помогут подобрать подходящий размер.

Двигатель будет демонстрировать гораздо более сильные вибрации, когда частота входных импульсов совпадает с собственной частотой двигателя.Это называется резонансом и обычно возникает около 200 Гц. В резонансе превышение и недооценка становится намного больше, и вероятность пропуска шагов намного выше. Резонанс меняется в зависимости от инерции нагрузки, но обычно он составляет около 200 Гц.

2-фазные шаговые двигатели

могут пропускать шаги только в группах по четыре. Если вы пропускаете шаги в количестве, кратном четырем, то вибрация вызывает потерю синхронизма или нагрузка слишком велика. Если количество пропущенных шагов не кратно четырем, велика вероятность, что неправильное количество импульсов или электрические помехи вызывают проблемы.

Есть несколько способов обойти резонанс. Самый простой способ — вообще избежать этой скорости. 200 Гц — это не очень быстро для двухфазного двигателя со скоростью 60 об / мин. Большинство двигателей имеют максимальную пусковую скорость около 1000 pps или около того. Таким образом, в большинстве случаев вы можете запускать двигатель на более высокой скорости, чем резонансная скорость.

Если вам необходимо начать движение со скоростью ниже резонансной, быстро разгонитесь в резонансном диапазоне.

Еще одно решение — уменьшить угол шага.При больших углах шага двигатель всегда будет перескакивать и недотягивать. Если двигателю не нужно двигаться далеко, он не создаст достаточной силы (крутящего момента) для значительного перерегулирования. Каждый раз, когда угол шага уменьшается, двигатель не будет так сильно вибрировать. Вот почему полушаговые и микрошаговые системы так эффективны для снижения вибрации.

Убедитесь, что размер двигателя соответствует нагрузке. Выбрав подходящий двигатель, вы можете повысить производительность.

Также доступны амортизаторы

.Демпферы устанавливаются на задний вал двигателя и поглощают часть энергии колебаний. Часто они недорого сгладят вибрацию двигателя.

5-фазные шаговые двигатели

Относительно новая технология в шаговых двигателях — 5-фазные. Наиболее очевидная разница между 2-фазным и 5-фазным режимами (см. Интерактивную диаграмму ниже) — это количество полюсов статора. В то время как двухфазные двигатели имеют 8 полюсов, по 4 на фазу, 5-фазный двигатель имеет 10 полюсов, по 2 на фазу. Ротор такой же, как у двухфазного двигателя.

В то время как двухфазный двигатель перемещается на 1/4 шага зуба каждой фазы. 5-фазный, благодаря своей конструкции, перемещается на 1/10 шага зуба. Поскольку шаг по-прежнему составляет 7,2 °, угол шага составляет 0,72 °. Простая конструкция позволяет разрешить 5-фазную схему с 500 шагами на оборот по сравнению с 2-фазной частотой с 200 шагами на оборот. 5-фазный обеспечивает разрешение в 2,5 раза лучше, чем 2-фазный.

Чем выше разрешение, тем меньше угол шага, что, в свою очередь, снижает вибрацию.Так как угол шага 5-фазы в 2,5 раза меньше, чем у 2-фазы, то звон, колебания намного меньше. Как в 2-фазном, так и в 5-фазном режиме ротор должен отклоняться или отклоняться более чем на 3,6 °, чтобы пропустить ступеньки. Поскольку угол шага 5-фазной схемы составляет всего 0,72 °, для двигателя практически невозможно отклониться или отклониться от нормы на 3,6 °. Шансы потерять синхронизацию с 5-фазным шаговым двигателем очень низки.

Способы привода

Существует четыре различных метода привода шаговых двигателей:

  • Волновой привод (полный шаг)
  • 2 фазы включены (полный шаг)
  • 1-2 фазы вкл. (Полушаг)
  • Microstep

Волновой привод

На диаграмме ниже метод волнового привода был упрощен, чтобы лучше проиллюстрировать теорию.На рисунке каждый поворот на 90 ° соответствует 1,8 ° вращения ротора в реальном двигателе.

В методе волнового возбуждения (также называемом методом однофазного включения) одновременно включается только одна фаза. Когда мы запитываем фазу А и южный полюс, она притягивает северный полюс ротора. Выключаем A и включаем B, ротор вращается на 90 ° (1,8 °) и так далее. Каждый раз запитывается только одна фаза.

Волновой привод имеет четырехступенчатую электрическую последовательность для вращения двигателя.

2 фазы на

В методе «2 фазы включены» всегда находятся под напряжением две фазы.

Еще раз на иллюстрации ниже каждые 90 ° соответствуют повороту на 1,8 °. Если обе фазы A и B запитаны как южные полюса, северный полюс ротора будет одинаково притягиваться к обоим полюсам и выровняться прямо посередине. Последовательно по мере подачи напряжения на фазы ротор будет вращаться, чтобы выровняться между двумя полюсами под напряжением.

Метод «2-фазное включение» имеет четырехступенчатую электрическую последовательность для вращения двигателя.

Стандартные 2-фазные и 2-фазные двигатели типа M

ORIENTAL MOTOR используют метод «2-фазного включения».

Какое преимущество имеет метод «2 фазы включения» перед методом «1 фаза включения»? Ответ — крутящий момент. В методе «1 фаза включена» одновременно включается только одна фаза, поэтому на ротор действует одна единица крутящего момента. В методе «2 фазы во включенном состоянии» у нас есть две единицы крутящего момента, действующие на ротор: 1 в положении «12 часов» и 1 в положении «3 часа». Если мы сложим эти два вектора крутящего момента вместе, мы получим результат при 45 °, а величина будет на 41,4% больше.Используя метод «2 фазы включен», мы можем получить тот же угол шага, что и метод «1 фаза», но с крутящим моментом на 41% больше.

Пятифазные двигатели немного отличаются. Вместо того, чтобы использовать метод «двухфазного включения», мы используем метод «четырехфазного включения». Каждый раз включаем 4 фазы и мотор делает шаг.

Пятифазный двигатель проходит через 10-ступенчатую электрическую последовательность.

1-2 фазы включены (полушаг)

Метод «1-2 фазы включения» или полушаговый режим объединяют два предыдущих метода.В этом случае мы запитываем фазу A. Ротор выстраивается. На этом этапе мы оставляем фазу A включенной и включаем фазу B. Теперь ротор одинаково притягивается к обеим линиям посередине. Ротор повернулся на 45 ° (0,9 °). Теперь отключаем фазу A, но оставляем на фазе B. Двигатель делает еще один шаг. И так далее. Чередуя включение одной фазы и двух включенных, мы вдвое уменьшили угол ступени. Помните, что с меньшим углом шага уменьшается вибрация.

(Для 5-фазного двигателя мы чередуем 4 фазы и 5 фаз.)

Полушаговый режим имеет восьмиступенчатую электрическую последовательность. Для пятифазного двигателя в методе «4-5 фаз» двигатель проходит через 20-ступенчатую электрическую последовательность.

Microstep

Microstepping — это способ сделать маленькие шаги еще меньше. Чем меньше шаг, тем выше разрешение и лучше характеристики вибрации. В микрошаге фаза не полностью или полностью выключена. Он частично включен. Синусоидальные волны применяются как к фазе A, так и к фазе B, разнесенной на 90 ° (0.9 ° в пятифазном шаговом двигателе).

Когда максимальная мощность находится в фазе A, фаза B равна нулю. Ротор выровняется с фазой A. По мере того, как ток в фазе A уменьшается, он увеличивается до фазы B. Ротор будет делать крошечные шаги к фазе B, пока фаза B не достигнет своего максимума, а фаза A не станет равной нулю. Процесс продолжается вокруг других фаз, и у нас есть микрошаг.

Есть некоторые проблемы, связанные с микрошагом, в основном с точностью и крутящим моментом. Поскольку фазы только частично запитаны, крутящий момент двигателя уменьшается, обычно примерно на 30%.Кроме того, из-за того, что разница крутящего момента между ступенями настолько мала, двигатель иногда не может преодолеть нагрузку. В этих случаях двигателю может быть дана команда сделать 10 шагов, прежде чем он действительно начнет двигаться. Во многих случаях необходимо замкнуть цикл с помощью кодировщиков, которые увеличивают цену.

Системы шаговых двигателей

  • Системы открытого цикла
  • Системы с замкнутым контуром
  • Сервосистемы

Открытый контур

Шаговые двигатели спроектированы как система с разомкнутым контуром. Генератор импульсов посылает импульсы в схему чередования фаз. Секвенсор фаз определяет, какие фазы необходимо выключить или включить, как описано в информации о полном шаге и полушаге. Секвенсор управляет мощными полевыми транзисторами, которые затем вращают двигатель.

Однако в системе с разомкнутым контуром нет проверки положения и способа узнать, сделал ли двигатель свое управляемое движение.

Замкнутый контур

Самый популярный метод замыкания контура — это добавление энкодера на задний вал двигателя с двумя валами.Кодировщик состоит из тонкого диска с линиями на нем. Диск проходит между передатчиком и приемником. Каждый раз, когда между ними проходит линия, на сигнальные линии выводится импульс. Эти импульсы возвращаются контроллеру, который ведет их счет. Обычно в конце хода контроллер сравнивает количество импульсов, отправленных драйверу, с количеством отправленных обратно импульсов энкодера. Обычно записывается процедура, согласно которой, если два числа различны, разница затем компенсируется. Если числа совпадают, ошибки не произошло и движение продолжается.

У этого метода есть два недостатка: стоимость (и сложность) и время отклика. Дополнительная стоимость кодировщика, наряду с увеличением сложности контроллера, увеличивает стоимость системы. Кроме того, поскольку коррекция (если таковая имеется) выполняется в конце хода, в систему можно добавить дополнительное время.

Сервосистема

Другой вариант — сервосистема.Сервосистема обычно представляет собой двигатель с малым числом полюсов, который обеспечивает высокую скорость, но не имеет встроенной способности позиционирования. Чтобы сделать его устройством положения, требуется обратная связь, обычно энкодер или резольвер, а также контуры управления. Сервопривод по существу включается и выключается, пока счетчик резольвера не достигнет определенной точки. Следовательно, сервопривод работает по ошибке. Например, сервопривод получает команду двигаться на 100 оборотов. Счетчик резольвера показывает ноль, и двигатель запускается. Когда счетчик резольвера достигает 100 оборотов, двигатель выключается.Если положение отклоняется, двигатель снова включается, чтобы вернуть его в исходное положение. Как сервопривод реагирует на ошибку, зависит от настройки усиления. Если установлен высокий коэффициент усиления, двигатель очень быстро отреагирует на любые изменения ошибки. Если настройка усиления низкая, двигатель не будет так быстро реагировать на изменения ошибки. Тем не менее, при любых настройках усиления по времени в систему управления движением вводятся временные задержки.

Системы шаговых двигателей с замкнутым контуром AlphaStep

AlphaStep — это революционный шаговый двигатель компании Oriental Motor.AlphaStep имеет встроенный преобразователь, обеспечивающий обратную связь по положению. В любой момент времени мы знаем, где находится ротор.

Драйвер AlphaStep имеет счетчик ввода. Подсчитываются все импульсы, поступающие на привод. Обратная связь резольвера поступает на счетчик положения ротора. Любое отклонение присутствует на счетчике отклонений. Обычно двигатель работает без обратной связи. Делаем векторы крутящего момента и двигатель следует. Если счетчик отклонения показывает значение, превышающее ± 1,8 °, секвенсор фаз включает вектор крутящего момента в верхней части кривой смещения крутящего момента, создавая максимальный крутящий момент, чтобы вернуть ротор в синхронизм.Если двигатель отключается на несколько шагов, секвенсор активирует несколько векторов крутящего момента на верхней части кривой смещения крутящего момента. Водитель может выдержать перегрузку до 5 секунд. Если он не может вернуть двигатель в синхронизм в течение 5 секунд, драйвер выдаст ошибку и подаст сигнал тревоги.

Замечательной особенностью AlphaStep является то, что он исправляет пропущенные шаги на лету. Он не ждет до конца хода, чтобы внести исправления. Как только ротор вернется в 1.8 °, драйвер возвращается в режим разомкнутого контура и подает необходимые фазные напряжения.

На приведенном ниже графике показана кривая изменения крутящего момента и когда агрегат находится в режиме разомкнутого или замкнутого контура. Кривая смещения крутящего момента — это крутящий момент, создаваемый одной фазой. Максимальный крутящий момент достигается при смещении зубьев ротора на 1,8 °. Двигатель может пропустить шаг только в том случае, если он разгоняется более чем на 3,6 °. Поскольку водитель берет на себя управление вектором крутящего момента, когда он промахивается на 1,8 °, двигатель не может пропустить шаги, кроме случаев перегрузки более 5 секунд.

Многие думают, что точность шага AlphaStep составляет ± 1,8 °. Точность шага AlphaStep составляет 5 угловых минут (0,083 °). Водитель управляет векторами крутящего момента за пределами 1,8 °. Оказавшись внутри 1,8 °, зубья ротора будут совпадать с вектором крутящего момента, который создается. AlphaStep следит за тем, чтобы правильный зуб совпадал с вектором крутящего момента.

AlphaStep доступен во многих версиях. ORIENTAL MOTOR предлагает версии с круглым валом и редуктором с несколькими передаточными числами для увеличения разрешения и крутящего момента или для уменьшения отраженной инерции.Почти все версии могут быть оснащены отказоустойчивым магнитным тормозом. ORIENTAL MOTOR также имеет версию на 24 В постоянного тока, называемую серией ASC.

Заключение

Таким образом, шаговые двигатели отлично подходят для приложений позиционирования. Шаговыми двигателями можно точно управлять как по расстоянию, так и по скорости, просто изменяя количество импульсов и их частоту. Благодаря большому количеству полюсов они обладают точностью и в то же время работают в разомкнутом контуре. Шаговый двигатель, если его размер соответствует области применения, никогда не пропустит шага.И поскольку им не нужна позиционная обратная связь, они очень рентабельны.


Что такое шаговые приводы и как они работают?

Шаговый привод — это схема драйвера, которая управляет работой шагового двигателя. Шаговые приводы работают, посылая ток через различные фазы в импульсах на шаговый двигатель. Существует четыре типа: волновые приводы (также называемые однофазными приводами), двухфазные приводы, одно-двухфазные приводы и микрошаговые приводы.

Приводы

Wave или однофазные приводы работают с включенной только одной фазой.Рассмотрим иллюстрацию ниже. Когда привод подает питание на полюс A (южный полюс), показанный зеленым, он притягивает северный полюс ротора. Затем, когда привод подает питание на B и отключает A, ротор поворачивается на 90 °, и это продолжается, поскольку привод подает питание на каждый полюс по одному.

Инженеры редко используют волновое движение: это неэффективно и обеспечивает небольшой крутящий момент, потому что одновременно задействуется только одна фаза двигателя.

Двухфазное вождение получило свое название потому, что одновременно включены две фазы.Если привод питает оба полюса A и B как южные полюса (показаны зеленым), то северный полюс ротора притягивается к обоим в равной степени и выравнивается посередине двух полюсов. По мере того, как последовательность подачи питания продолжается, ротор непрерывно заканчивается выравниванием между двумя полюсами.

При двухфазном включении разрешение не выше, чем при однофазном включении, но зато создается больший крутящий момент.

Привод с включением одной-двух фаз получил свое название от способа подачи питания на 1 или 2 фазы в любое определенное время.В этом методе управления, также известном как полушаговый, привод подает питание на полюс A (показан зеленым)… затем подает питание на полюса A и B… затем подает питание на полюс B… и так далее.

Одно-двухфазное вождение обеспечивает более точное разрешение движения. Когда включены две фазы, двигатель развивает больший крутящий момент. Одно предостережение: пульсация крутящего момента вызывает беспокойство, поскольку может вызвать резонанс и вибрацию.

Микрошаговый режим связан с однофазным включением.

Microstepping обеспечивает очень точное разрешение движения. Здесь привод использует регулирование тока для предотвращения колебаний крутящего момента. С помощью этой техники инженеры могут использовать шаговые двигатели в большем количестве приложений.

По сути, микрошаговый привод увеличивает и уменьшает ток по синусоиде, поэтому ни один полюс не включен или не выключен полностью. Вот образец микрошагового синусоидального тока:

Обратите внимание на тонкий зазубренный контур синусоидального тока. Хотя микрошаговый режим не обязательно улучшает точность, он дает более высокое разрешение, чем другие режимы движения, что особенно полезно для приложений, в которых двигатель работает без нагрузки.Во время работы моторы могут пропускать шаги. Тем не менее, микрошаговые движения распространяют энергию, а не доставляют ее к двигателю сразу, что может вызвать звон и перерегулирование.

Для всех этих форм привода двигатели могут иметь разные обмотки. Униполярные двигатели принимают только положительное напряжение. Униполярный требует дополнительного провода в середине каждой катушки, чтобы позволить току течь от одного конца к другому. Биполярные шаговые двигатели используют как положительное, так и отрицательное напряжение. Биполярные шаговые двигатели имеют больший крутящий момент, потому что они создают более сильное магнитное поле, но для их конструкции также требуется больше провода.

Для дополнительной информации:

Сайт Oriental Motor по шаговым двигателям

Техасский университет в Остине: архив STMicroelectronics PDF

Электронная книга

Online: All About Circuits — Stepper Motors

Что такое шаговый двигатель и как он работает

От простого DVD-плеера или принтера в вашем доме до сложного станка с ЧПУ или роботизированного манипулятора — шаговые двигатели можно найти почти повсюду. Его способность выполнять точные движения с электронным управлением позволила этим двигателям найти применение во многих устройствах из семейства кошачьих, таких как камеры наблюдения, жесткие диски, станки с ЧПУ, 3D-принтеры, робототехника, сборочные роботы, лазерные резаки и многое другое. В этой статье мы узнаем, что делает эти моторы особенными, и что за этим стоит теория. Мы узнаем, как использовать его для вашего приложения.

Введение в шаговые двигатели

Как и все двигатели, шаговые двигатели также имеют статор и ротор , но в отличие от обычного двигателя постоянного тока статор состоит из отдельных наборов катушек. Количество катушек будет отличаться в зависимости от типа шагового двигателя , но пока просто поймите, что в шаговом двигателе ротор состоит из металлических полюсов, и каждый полюс будет притягиваться набором катушек в статоре.На схеме ниже показан шаговый двигатель с 8 полюсами статора и 6 полюсами ротора.

Если вы посмотрите на катушки на статоре, они расположены в виде пар катушек, как A и A ’образуют пару, B и B’ образуют пару и так далее. Таким образом, каждая из этих пар катушек образует электромагнит, и они могут получать питание индивидуально с помощью схемы драйвера. Когда на катушку подается напряжение, она действует как магнит, и полюс ротора выравнивается с ним, когда ротор вращается, чтобы приспособиться к выравниванию со статором, это называется одной ступенью .Точно так же, последовательно запитывая катушки, мы можем вращать двигатель небольшими шагами, чтобы сделать полный оборот.

Типы шаговых двигателей

В основном существуют три типа шаговых двигателей в зависимости от конструкции, а именно:

  • Шаговые двигатели с регулируемым сопротивлением: Они имеют ротор с железным сердечником, который притягивается к полюсам статора и обеспечивает движение за счет минимального сопротивления между статором и ротором.
  • Шаговый двигатель с постоянным магнитом: У них есть ротор с постоянными магнитами, и они отталкиваются или притягиваются к статору в соответствии с приложенными импульсами.
  • Гибридный синхронный шаговый двигатель: Они представляют собой комбинацию шагового двигателя с переменным сопротивлением и шагового двигателя с постоянным магнитом.

Помимо этого, мы также можем классифицировать шаговые двигатели как униполярные и биполярные в зависимости от типа обмотки статора.

  • Биполярный шаговый двигатель: Катушки статора на этом типе двигателя не имеют общего провода. Привод этого типа шагового двигателя отличается и сложен, а схема управления не может быть легко спроектирована без микроконтроллера.
  • Униполярный шаговый двигатель: В этом типе шагового двигателя мы можем взять центральное ответвление обеих фазных обмоток на общую землю или на общую мощность, как показано ниже. Это упрощает управление двигателями, есть много типов в униполярных шаговых двигателях, а также

Режимы работы шагового двигателя

Поскольку статор шагового режима состоит из разных пар катушек, каждую пару катушек можно возбуждать множеством различных методов, что позволяет управлять режимами во многих различных режимах. Ниже приведены общие классификации

.

Полный шаговый режим

В режиме полного шага возбуждения мы можем добиться полного вращения на 360 ° с минимальным количеством оборотов (шагов). Но это приводит к меньшей инерции, а также вращение не будет плавным. Есть еще две классификации в режиме полного шага возбуждения, это однофазный пошаговый режим и двухфазный режим .

1. Пошаговое включение одной фазы или пошаговое изменение волны: В этом режиме только одна клемма (фаза) двигателя будет находиться под напряжением в любой момент времени.Он имеет меньшее количество шагов и, следовательно, может обеспечить полное вращение на 360 °. Поскольку количество шагов меньше, ток, потребляемый этим методом, также очень низкий. В следующей таблице показана последовательность сигналов для 4-фазного шагового двигателя

.
Шаг Фаза 1 Фаза 2 Фаза 3 Фаза 4
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

2. Двухэтапное включение: Как следует из названия, в этом методе две фазы будут одной. Он имеет то же количество шагов, что и волновой, но поскольку одновременно возбуждаются две катушки, он может обеспечить лучший крутящий момент и скорость по сравнению с предыдущим методом. Хотя с одной стороны, этот метод потребляет больше энергии.

Шаг Фаза 1 Фаза 2 Фаза 3 Фаза 4

1

1

1

0

0

2

0 1 1 0
3 0 0 1 1
4 1 0 0 1

Полушаговый режим

Полушаговый режим представляет собой комбинацию однофазного и двухфазного режимов. Эта комбинация поможет нам преодолеть вышеупомянутый недостаток обоих режимов.

Как вы уже догадались, поскольку мы комбинируем оба метода, нам придется выполнить 8 шагов в этом методе, чтобы получить полное вращение. Последовательность переключения для 4-фазного шагового двигателя показана ниже

Шаг

Фаза 1

Фаза 2

Фаза 3

Фаза 4

1

1

0

0

0

2

1

1

0

0

3

0

1

0

0

4

0

1

1

0

5

0

0

1

1

6

0

0

0

1

7

1

0

0

1

8

1

0

0

0

Микрошаговый режим

Микрошаговый режим — это комплекс всего, но он предлагает очень хорошую точность наряду с хорошим крутящим моментом и плавной работой. В этом методе катушка возбуждается двумя синусоидальными волнами, разнесенными на 90 °. Таким образом, мы можем контролировать направление и амплитуду тока, протекающего через катушку, что помогает нам увеличить количество шагов, которые двигатель должен сделать за один полный оборот. Микрошаговый режим может достигать 256 шагов для одного полного вращения, что позволяет двигателю вращаться быстрее и плавнее.

Как использовать шаговый двигатель

Хватит скучной теории, допустим, кто-то дает вам шаговый двигатель, например, знаменитый 28-BYJ48, и вам действительно интересно, как он работает.К этому времени вы бы поняли, что невозможно заставить эти двигатели вращаться, просто запитав их от источника питания, так как бы вы это сделали?

Давайте взглянем на этот шаговый двигатель 28-BYJ48 .

Хорошо, в отличие от обычного двигателя постоянного тока, из этого выходят пять проводов всех причудливых цветов, и почему это так? Чтобы понять это, мы должны сначала узнать, как работает степпер, о котором мы уже говорили. Прежде всего, шаговые двигатели не вращают , они шаговые, поэтому их также называют шаговыми двигателями .Это означает, что они будут двигаться только на один шаг за раз. В этих двигателях присутствует последовательность катушек, и эти катушки должны быть запитаны определенным образом, чтобы двигатель вращался. Когда каждая катушка находится под напряжением, двигатель делает шаг, и последовательность подачи энергии заставляет двигатель делать непрерывные шаги, тем самым заставляя его вращаться. Давайте посмотрим на катушки, присутствующие внутри двигателя, чтобы точно знать, откуда берутся эти провода.

Как вы можете видеть, двигатель имеет однополярную 5-проводную катушку .Есть четыре катушки, которые необходимо включить в определенной последовательности. На красные провода будет подаваться напряжение +5 В, а остальные четыре провода будут заземлены для срабатывания соответствующей катушки. Мы используем любой микроконтроллер, чтобы запитать эти катушки в определенной последовательности и заставить двигатель выполнять необходимое количество шагов. Опять же, существует множество последовательностей, которые вы можете использовать, обычно используется 4-шаговый , а для более точного управления также можно использовать 8-шаговое управление . Таблица последовательности для 4-ступенчатого управления показана ниже.

Шаг

Катушка под напряжением

Шаг 1

А и В

Шаг 2

B и C

Шаг 3

C и D

Шаг 4

D и A

Итак, почему этот мотор называется 28-BYJ48 ? Серьезно!!! Я не знаю.У этого двигателя нет никаких технических причин для такого названия; возможно, нам не стоит углубляться в это. Давайте посмотрим на некоторые важные технические данные, полученные из таблицы данных этого двигателя на картинке ниже.

Это очень много информации, но нам нужно взглянуть на несколько важных, чтобы знать, какой тип шагового двигателя мы используем, чтобы мы могли его эффективно программировать. Сначала мы знаем, что это шаговый двигатель 5 В, поскольку на красный провод подается напряжение 5 В.Кроме того, мы знаем, что это четырехфазный шаговый двигатель, поскольку в нем было четыре катушки. Теперь передаточное число равно 1:64. Это означает, что вал, который вы видите снаружи, сделает один полный оборот только в том случае, если двигатель внутри вращается 64 раза. Это связано с шестернями, которые соединены между двигателем и выходным валом, эти шестерни помогают увеличить крутящий момент.

Еще одна важная информация, на которую следует обратить внимание, — это угол шага : 5,625 ° / 64. Это означает, что двигатель при работе в 8-ступенчатой ​​последовательности будет двигаться на 5.625 градусов для каждого шага, и потребуется 64 шага (5,625 * 64 = 360), чтобы совершить один полный оборот.

Расчет шагов на оборот для шагового двигателя

Важно знать, как рассчитать количество шагов на оборот для вашего шагового двигателя, потому что только тогда вы сможете эффективно программировать / управлять им.

Предположим, мы будем работать с двигателем в 4-х шаговой последовательности, поэтому угол шага будет 11,25 °, поскольку он составляет 5,625 ° (указано в таблице данных) для 8-шаговой последовательности, он будет 11.25 ° (5,625 * 2 = 11,25).

  Шагов на оборот = 360 / угол шага 
  Здесь 360 / 11,25 = 32 шага на оборот.  

Зачем нужны модули драйверов для шаговых двигателей?

Большинство шаговых двигателей работают только с помощью модуля драйвера. Это связано с тем, что модуль контроллера (микроконтроллер / цифровая схема) не сможет обеспечить достаточный ток от своих контактов ввода / вывода для работы двигателя. Таким образом, мы будем использовать внешний модуль, такой как модуль ULN2003 , в качестве драйвера шагового двигателя .Существует много типов модулей драйвера, и номинальные характеристики одного из них будут меняться в зависимости от типа используемого двигателя. Основным принципом для всех модулей драйвера будет источник / потребление тока, достаточного для работы двигателя. Кроме того, существуют также модули драйверов, в которых заранее запрограммирована логика, но мы не будем обсуждать это здесь.

Если вам интересно узнать , как вращать шаговый двигатель , используя какой-либо микроконтроллер и драйвер IC, то мы рассмотрели много статей о его работе с различными микроконтроллерами:

Теперь я считаю, что у вас достаточно информации, чтобы управлять любым шаговым двигателем, который вам нужен для вашего проекта.Давайте посмотрим на преимущества и недостатки шаговых двигателей.

Преимущества шаговых двигателей

Одним из основных преимуществ шагового двигателя является то, что он имеет отличное управление положением и, следовательно, может использоваться для точного управления. Кроме того, он имеет очень хороший удерживающий момент, что делает его идеальным выбором для робототехники. Считается, что шаговые двигатели имеют более продолжительный срок службы, чем обычные двигатели постоянного тока или серводвигатели.

Недостатки шаговых двигателей

Как и все двигатели, шаговые двигатели также имеют свои недостатки, поскольку они вращаются небольшими шагами, поэтому не могут достичь высоких скоростей.Кроме того, он потребляет мощность для удержания крутящего момента, даже когда он идеален, что увеличивает потребление энергии.

Что такое шаговый двигатель?

Шаговый двигатель (также называемый шаговым двигателем) — это двигатель, который вращается прерывисто, перемещаясь на фиксированный угол на каждом шаге, а не непрерывно вращает свой вал.

Например, движение секундной стрелки на часах, которое движется вперед на одну секунду за раз, может быть достигнуто с помощью шагового двигателя, который перемещается с шагом 6 ° каждую секунду.

Итак, как шаговый двигатель достигает этой характеристики вращения вала на фиксированный угол на каждом шаге?

Секрет заключается в использовании электрических импульсов. Импульс — это электрический сигнал, возникающий при включении и выключении источника питания, при этом каждое такое переключение считается одним импульсом. Шаговый двигатель использует эти импульсы для точного механического управления углом и скоростью вращения.

Типы шаговых двигателей [1] (классифицируются по конструкции ротора)

Шаговые двигатели

можно условно разделить на следующие три категории в зависимости от конструкции их ротора.

Двигатель с постоянными магнитами
Ротор содержит постоянный магнит. Недостатком этой конструкции является то, что она не может обеспечить гибкость по углу поворота (углу шага).

Электродвигатель с регулируемым сопротивлением (VR)
Ротор содержит сердечники, по форме напоминающие зубья шестерни. Это обеспечивает большую гибкость в настройке угла шага.

Гибридный (HB) мотор
Ротор содержит как постоянные магниты, так и сердечники, имеющие структуру зубцов шестерни.Этот тип двигателя используется в широком спектре приложений, сочетая в себе преимущества двигателей с постоянными магнитами и двигателей VR. Все шаговые двигатели, разработанные и изготовленные ASPINA, являются двигателями HB.

Принцип действия шаговых двигателей HB

Ротор сконструирован с цилиндрическим постоянным магнитом, расположенным между двумя сердечниками, концентрическими по отношению к валу двигателя и смещенными друг от друга на полшага. Ротор вращается на фиксированный угол шага каждый раз при вводе импульса.Поскольку двухфазный шаговый двигатель HB с углом шага 1,8 ° поворачивается на 1,8 ° за каждый импульс, для одного полного оборота требуется 360 ° / 1,8 ° = 200 импульсов.

Типы шаговых двигателей [2] (классифицируются по току в катушке)

Шаговые двигатели

также можно разделить на следующие две категории в зависимости от протекания электрического тока в катушке.

Униполярный двигатель

Ток в униполярном двигателе всегда течет через обмотки катушки в одном направлении. Хотя это упрощает связанную схему управления, он производит меньший крутящий момент, чем биполярный двигатель.

Биполярный двигатель

Ток в биполярном двигателе может течь через обмотки катушки в любом направлении. Хотя для этого требуется более сложная схема управления, чем для униполярного двигателя, он производит больший крутящий момент.

Что такое драйвер шагового двигателя?

Шаговые двигатели

используются вместе со схемой драйвера. Драйвер регулирует угол и скорость вращения двигателя на основе входных электрических импульсов от контроллера.

Драйвер двухфазного шагового двигателя HB

Характеристики шаговых двигателей

Шаговые двигатели

отличаются от двигателей других типов следующим образом.

Преимущества
  • Поскольку угол поворота определяется количеством импульсов (цифровой вход), управление положением (углом поворота) просто
  • Может вращаться с малой скоростью
  • Может использовать управление положением без обратной связи
  • Отличная способность оставаться заблокированным при остановке
Недостатки
  • Требуется приводная схема
  • Потеря синхронизации может произойти из-за таких факторов, как неожиданные изменения нагрузки
  • Высокий уровень вибрации и шума

Применения для шаговых двигателей

Превосходная точность остановки, высокий крутящий момент на средних и низких скоростях и превосходная отзывчивость шаговых двигателей означают, что они могут использоваться в широком спектре приводных приложений, требующих точного управления.

  • Производственное оборудование
  • Медицинское оборудование
  • Аналитические приборы
  • Банкоматы
  • Торговые автоматы
  • Автоматы по продаже билетов
  • Копировальные аппараты
  • Роботы
  • Оптические приводы (приводы Blu-ray, DVD и т. Д.)
  • Лазерные принтеры
  • Цифровые фотоаппараты
  • Жалюзи кондиционера
  • Аттракционы

Бесщеточные двигатели постоянного тока для решения ваших проблем

ASPINA поставляет не только автономные шаговые двигатели, но и системные продукты, которые включают системы привода и управления, а также механическую конструкцию.Они подкреплены всесторонней поддержкой, которая простирается от прототипирования до коммерческого производства и послепродажного обслуживания.
ASPINA может предложить решения, адаптированные к функциям и характеристикам, требуемым для различных отраслей промышленности, приложений и продуктов клиентов, а также для конкретных производственных условий.

ASPINA поддерживает не только клиентов, которые уже знают свои требования или спецификации, но и тех, кто сталкивается с проблемами на ранних этапах разработки.
Вы боретесь со следующими проблемами?

Выбор двигателя
  • У вас еще нет подробных спецификаций или чертежей, но нужна консультация по двигателям?
  • У вас нет сотрудников, имеющих опыт работы с двигателями, и вы не можете определить, какой двигатель лучше всего подойдет для вашего нового продукта?
Разработка двигателей и сопутствующих компонентов
  • Хотите сосредоточить свои ресурсы на основных технологиях и передать на аутсорсинг приводные системы и разработку двигателей?
  • Хотите сэкономить время и силы, связанные с изменением конструкции существующих механических компонентов при замене двигателя?
Уникальное требование
  • Вам нужен двигатель, изготовленный по индивидуальному заказу, но ваш обычный поставщик отказался от него?
  • Не можете найти двигатель, который дает вам необходимый контроль, и вот-вот теряете надежду?

Ищете ответы на эти проблемы? Свяжитесь с ASPINA, мы здесь, чтобы помочь.

Ссылки на глоссарий и страницы часто задаваемых вопросов

Шаговые двигатели | Двигатели переменного тока

Шаговый двигатель против серводвигателя

Шаговый двигатель — это «цифровая» версия электродвигателя. Ротор движется дискретными шагами по команде, а не вращается непрерывно, как в обычном двигателе. Когда он остановлен, но находится под напряжением, шаговый двигатель (сокращенно от шагового двигателя) удерживает свою нагрузку стабильно с удерживающим моментом .

Широкое распространение шаговых двигателей за последние два десятилетия было вызвано появлением цифровой электроники.Современная электроника на твердотельных драйверах была ключом к ее успеху. Кроме того, микропроцессоры легко подключаются к схемам драйвера шагового двигателя.

С точки зрения применения предшественником шагового двигателя был серводвигатель. Сегодня это более дорогое решение для высокопроизводительных приложений управления движением. Стоимость и сложность серводвигателя обусловлены дополнительными компонентами системы: датчиком положения и усилителем ошибки). Это все еще способ позиционировать тяжелые грузы, недоступные для шаговых двигателей с меньшей мощностью.

Для высокого ускорения или необычайно высокой точности по-прежнему требуется серводвигатель. В противном случае по умолчанию используется шаговый двигатель из-за простой электроники привода, хорошей точности, хорошего крутящего момента, умеренной скорости и низкой стоимости.

Шаговый двигатель против серводвигателя

Шаговый двигатель позиционирует головки чтения-записи в дисководе гибких дисков. Когда-то они использовались с той же целью в жестких дисках. Однако высокая скорость и точность, необходимые для позиционирования головки современного жесткого диска, требуют использования линейного серводвигателя (звуковой катушки).

Сервоусилитель — это линейный усилитель с некоторыми сложными для интеграции дискретными компонентами. Чтобы оптимизировать коэффициент усиления сервоусилителя в зависимости от фазовой характеристики механических компонентов, требуются значительные конструкторские усилия. Драйверы шаговых двигателей представляют собой менее сложные твердотельные переключатели, которые могут быть либо «включены», либо «выключены». Таким образом, контроллер шагового двигателя менее сложен и дорог, чем контроллер серводвигателя.

Slo-syn Синхронные двигатели могут работать от сетевого напряжения переменного тока, как однофазные асинхронные двигатели с постоянными конденсаторами.Конденсатор генерирует вторую фазу 90 ° °. При постоянном сетевом напряжении у нас есть двухфазный привод.

Сигналы возбуждения биполярного (±) прямоугольные волны 2–24 В в наши дни более распространены. Биполярные магнитные поля могут также создаваться униполярными (одна полярность) напряжениями, приложенными к чередующимся концам обмотки с центральным отводом (рисунок ниже).

Другими словами, на двигатель можно переключить постоянный ток, чтобы он видел переменный ток. Поскольку обмотки последовательно запитываются, ротор синхронизируется с соответствующим магнитным полем статора.Таким образом, мы рассматриваем шаговые двигатели как класс синхронных двигателей переменного тока.

Униполярный привод катушки с центральным отводом в точке (b), имитирует переменный ток в одиночной катушке в точке (a)

Характеристики

Шаговые двигатели

прочные и недорогие, поскольку в роторе нет контактных колец обмотки или коммутатора. Ротор представляет собой твердое тело цилиндрической формы, которое также может иметь выступающие полюса или мелкие зубья. Чаще всего ротор представляет собой постоянный магнит.

Вы можете определить, что ротор представляет собой постоянный магнит, вращая рукой без питания, показывая фиксирующий момент , пульсации крутящего момента. Катушки шагового двигателя намотаны внутри многослойного статора, за исключением конструкции , которая может составлять штабель . Фаз намотки может быть от двух до пяти.

Эти фазы часто разделяют на пары. Таким образом, 4-полюсный шаговый двигатель может иметь две фазы, состоящие из линейных пар полюсов, разнесенных на 90, ° и °. Также может быть несколько пар полюсов на фазу.Например, 12-полюсный шаговый двигатель имеет 6 пар полюсов, по три пары на фазу.

Поскольку шаговые двигатели не обязательно вращаются непрерывно, номинальная мощность в лошадиных силах отсутствует. Если они действительно вращаются непрерывно, они даже не приблизятся к номинальной мощности в лошадиных силах. Это действительно небольшие устройства с низким энергопотреблением по сравнению с другими двигателями.

Они имеют номинальный крутящий момент до тысячи дюйм-унций (дюймов-унций) или десяти Н-м (ньютон-метров) для блока размером 4 кг. Шаговый двигатель маленького размера «копейки» имеет крутящий момент в одну сотую ньютон-метра или несколько дюймов-унций.Большинство шаговых двигателей имеют диаметр в несколько дюймов с крутящим моментом в доли нм или несколько дюймов на дюйм.

Доступный крутящий момент является функцией скорости двигателя, инерции нагрузки, крутящего момента нагрузки и приводной электроники, как показано на графике зависимости скорости от крутящего момента ниже. Удерживающий шаговый двигатель под напряжением имеет относительно высокий номинальный удерживающий момент . Для работающего двигателя доступен меньший крутящий момент, который снижается до нуля на некоторой высокой скорости.

Эта скорость часто недостижима из-за механического резонанса комбинации нагрузок двигателя.

Скоростные характеристики шагового двигателя

Шаговые двигатели

перемещаются по одному шагу за раз, угол шага при изменении формы волны возбуждения. Угол шага связан с деталями конструкции двигателя: числом витков, числом полюсов, числом зубцов. Это может быть от 90 ° до 0,75 ° , что соответствует от 4 до 500 шагов на оборот.

Электроника привода может уменьшить угол шага вдвое, перемещая ротор на полутонов .

Шаговые двигатели не могут мгновенно достичь скорости на кривой скорость-крутящий момент. Максимальная начальная частота — это самая высокая скорость, с которой может быть запущен остановленный и ненагруженный шаговый двигатель. Любая нагрузка сделает этот параметр недостижимым.

На практике частота шагов увеличивается во время пуска значительно ниже максимальной пусковой частоты. При остановке шагового двигателя скорость шага может быть уменьшена перед остановкой.

Максимальный крутящий момент, при котором шаговый двигатель может запускаться и останавливаться, равен моменту втягивания .Эта крутящая нагрузка на шаговый двигатель возникает из-за фрикционной (тормозной) и инерционной (маховик) нагрузок на вал двигателя. Когда двигатель набирает обороты, крутящий момент отрыва является максимально устойчивым крутящим моментом без потери шагов.

Существует три типа шаговых двигателей в порядке возрастания сложности: переменное магнитное сопротивление, постоянный магнит и гибридные. Шаговый двигатель с переменным сопротивлением имеет прочный ротор из мягкой стали с выступающими полюсами. Шаговый двигатель с постоянными магнитами имеет цилиндрический ротор с постоянными магнитами.

Гибридный шаговый двигатель имеет зубья из мягкой стали, добавленные к ротору с постоянным магнитом для уменьшения угла шага.

Шаговый двигатель с переменным сопротивлением

Шаговый двигатель с регулируемым сопротивлением полагается на магнитный поток, ищущий путь с наименьшим сопротивлением через магнитную цепь. Это означает, что магнитно-мягкий ротор неправильной формы будет двигаться, замыкая магнитную цепь, сводя к минимуму длину любого воздушного зазора с высоким сопротивлением.

Статор обычно имеет три обмотки, распределенные между парами полюсов, ротор — четыре выступающих полюса, что дает угол шага 30 ° .Обесточенный шаговый двигатель без фиксирующего момента при вращении рукой идентифицируется как шаговый двигатель с переменным сопротивлением.

Трехфазные и четырехфазные шаговые двигатели с регулируемым сопротивлением

Формы сигналов возбуждения для шагового двигателя с 3 фазами можно увидеть в разделе «Реактивный двигатель». Привод для шагового двигателя 4 φ показан на рисунке ниже. Последовательное переключение фаз статора создает вращающееся магнитное поле, за которым следует ротор.

Однако из-за меньшего количества полюсов ротора ротор перемещается на каждый шаг меньше, чем угол статора. Для шагового двигателя с переменным сопротивлением шаговый угол определяется по формуле:

 ΘS = 360o / NS ΘR = 360o / NR ΘST = ΘR - ΘS где: ΘS = угол статора, ΘR = угол ротора, ΘST = угол шага NS = количество полюсов статора, NP = количество полюсов ротора 

Последовательность шагов для шагового двигателя с переменным сопротивлением

На рисунке выше переход от φ1 к φ2 и т. Д., магнитное поле статора вращается по часовой стрелке. Ротор движется против часовой стрелки (CCW). Обратите внимание, чего не происходит! Точечный зуб ротора не перемещается на следующий зуб статора. Вместо этого поле статора φ2 притягивает другой зуб при перемещении ротора против часовой стрелки, который представляет собой меньший угол (15 ° ), чем угол статора 30 ° .

Угол зуба ротора 45 ° учитывается при вычислении по приведенному выше уравнению. Ротор перемещается против часовой стрелки к следующему зубцу ротора под углом 45 ° , но совмещается с направлением вращения на 30 ° зуба статора.Таким образом, фактический угол шага — это разница между углом статора 45 ° ° и углом ротора 30 °.

Как далеко повернулся бы шаговый двигатель, если бы ротор и статор имели одинаковое количество зубцов? Ноль — без обозначений.

При запуске в состоянии покоя с включенной фазой φ1 требуются три импульса (φ2, φ3, φ4) для совмещения «точечного» зубца ротора со следующим зубцом статора против часовой стрелки, который составляет 45 ° . С 3 импульсами на зуб статора и 8 зубцами статора, 24 импульса или шагов перемещают ротор на 360 ° .

При изменении последовательности импульсов направление вращения меняется на противоположное вверху справа. Направление, частота шагов и количество шагов регулируются контроллером шагового двигателя, питающим драйвер или усилитель. Это можно было бы объединить в одну печатную плату.

Контроллер может быть микропроцессором или специализированной интегральной схемой. Драйвер представляет собой не линейный усилитель, а простой двухпозиционный переключатель, способный выдавать достаточно большой ток, чтобы активировать шаговый двигатель. В принципе, драйвером может быть реле или даже тумблер для каждой фазы.На практике драйвером служат либо дискретные транзисторные ключи, либо интегральная схема.

И драйвер, и контроллер могут быть объединены в единую интегральную схему, принимающую прямую команду и шаговый импульс. Он последовательно выводит ток на соответствующие фазы.

Шаговый двигатель с регулируемым сопротивлением

Вы можете разобрать шаговый резистор для просмотра внутренних компонентов. Внутренняя конструкция шагового двигателя с регулируемым сопротивлением показана на рисунке выше.У ротора выступающие полюса, так что они могут притягиваться к вращающемуся полю статора при его переключении. Настоящий двигатель намного длиннее, чем наша упрощенная иллюстрация.

Ходовой винт шагового привода с переменным сопротивлением

Вал часто снабжен приводным винтом (рисунок выше). Это может перемещать головки дисковода гибких дисков по команде контроллера дисковода гибких дисков.

Шаговые двигатели с регулируемым сопротивлением применяются, когда требуется только средний уровень крутящего момента и достаточен большой угол шага.Винтовой привод, используемый в дисководе гибких дисков, является таким приложением. Когда контроллер включается, он не знает положение каретки.

Тем не менее, он может двигать каретку к оптическому прерывателю, калибруя положение, в котором острие режет прерыватель, как «исходное». Контроллер отсчитывает пошаговые импульсы с этой позиции. Пока крутящий момент нагрузки не превышает крутящий момент двигателя, контроллер будет знать положение каретки.

Резюме: шаговый двигатель с регулируемым сопротивлением

  • Ротор представляет собой цилиндр из мягкого железа с выступающими (выступающими) полюсами.
  • Это наименее сложный и недорогой шаговый двигатель.
  • Единственный тип шагового двигателя без фиксирующего момента при ручном вращении обесточенного вала двигателя.
  • Большой угол ступени
  • Ходовой винт часто устанавливается на вал для линейного шагового движения.

Шаговый двигатель с постоянным магнитом

Шаговый двигатель с постоянными магнитами имеет цилиндрический ротор с постоянными магнитами. Статор обычно имеет две обмотки. Обмотки могут быть отведены по центру, чтобы обеспечить возможность использования униполярной схемы драйвера , в которой полярность магнитного поля изменяется путем переключения напряжения с одного конца обмотки на другой.

Для питания обмоток без центрального ответвителя требуется биполярный привод с переменной полярностью. Чистый шаговый двигатель с постоянным магнитом обычно имеет большой угол шага. Вращение вала обесточенного двигателя показывает фиксирующий момент. Если угол фиксации большой, скажем 7,5 ° до 90 ° , это, скорее всего, шаговый двигатель с постоянным магнитом, а не гибридный шаговый двигатель.

Для шаговых двигателей с постоянными магнитами требуются фазные переменные токи, подаваемые на две (или более) обмотки.На практике это почти всегда прямоугольные волны, генерируемые твердотельной электроникой от постоянного тока.

Биполярный привод представляет собой прямоугольные волны, чередующиеся между (+) и (-) полярностями, например, от +2,5 В до -2,5 В. Униполярный привод подает (+) и (-) переменный магнитный поток на разработанные катушки от пары положительных прямоугольных волн, приложенных к противоположным концам катушки с центральным отводом. Синхронизация биполярной или униполярной волны — это волновой, полный или полушаговый.

Волновой привод

Последовательность возбуждения волн PM (a) φ1 +, (b) φ2 +, (c) φ1-, (d) φ2-

Концептуально самым простым приводом является волноводный привод .Последовательность вращения слева направо: положительная φ-1 направляет северный полюс ротора вверх, (+) φ-2 направляет ротор на север вправо, отрицательная φ-1 притягивает ротор на север вниз, (-) φ-2 указывает ротор влево. Приведенные ниже формы волны возбуждения показывают, что одновременно находится под напряжением только одна катушка. Несмотря на простоту, это не дает такого большого крутящего момента, как другие методы привода.

Формы сигналов: биполярный волновой привод

Формы сигналов (рисунок выше) биполярны, поскольку обе полярности, (+) и (-), управляют шаговым двигателем. Магнитное поле катушки меняется на противоположное, потому что меняется полярность управляющего тока.

Формы сигналов: однополярный волновой привод

Формы сигналов (рисунок выше) однополярны, потому что требуется только одна полярность. Это упрощает электронику привода, но требует вдвое больше драйверов. Форм сигналов вдвое больше, потому что пара (+) волн требуется для создания переменного магнитного поля путем приложения к противоположным концам катушки с центральным отводом.

Двигатель требует переменных магнитных полей. Они могут быть вызваны как униполярными, так и биполярными волнами. Однако обмотки двигателя должны иметь центральные отводы для униполярного привода.

Шаговые двигатели с постоянными магнитами производятся с различными конфигурациями выводов.

Электрические схемы шагового двигателя

  • 4-проводный двигатель может работать только с биполярным сигналом.
  • Шестипроводный двигатель, наиболее распространенный вариант, предназначен для униполярного привода из-за центральных ответвлений.Тем не менее, это может быть вызвано биполярными волнами, если игнорировать центральные отводы.
  • 5-проводный двигатель может приводиться в движение только однополярными волнами, поскольку общий центральный ответвитель мешает, если обе обмотки находятся под напряжением одновременно.
  • 8-проводная конфигурация встречается редко, но обеспечивает максимальную гибкость. Он может быть подключен как для униполярного привода, так и для 6-проводного или 5-проводного двигателя. Пара катушек может быть соединена последовательно для высоковольтного биполярного слаботочного привода или параллельно для низковольтного сильноточного привода.

Бифилярная обмотка получается путем параллельной намотки катушек двумя проводами, часто красного и зеленого эмалированного провода. Этот метод обеспечивает точное соотношение витков 1: 1 для обмоток с центральным отводом. Этот метод намотки применим ко всем схемам, кроме четырехпроводной схемы, указанной выше.

Полный шаговый привод

Полноступенчатый привод обеспечивает больший крутящий момент, чем волновой привод, потому что обе катушки находятся под напряжением одновременно. Это притягивает полюса ротора на полпути между двумя полюсами поля.(Рисунок ниже)

Полный шаг, биполярный привод

Полноступенчатый биполярный привод, как показано выше, имеет тот же угол шага, что и волновой привод. Для униполярного привода (не показан) потребуется пара униполярных сигналов для каждой из вышеуказанных биполярных сигналов, приложенных к концам обмотки с центральным отводом. В униполярном приводе используется менее сложная и менее дорогая схема драйвера. Дополнительная стоимость биполярного привода оправдана, когда требуется больший крутящий момент.

Полушаговый привод

Угол шага для данной геометрии шагового двигателя сокращается вдвое с полушагом привода . Это соответствует удвоенному количеству ступенчатых импульсов на оборот. (Рисунок ниже) Полушаговый режим обеспечивает большее разрешение при установке вала двигателя.

Например, полушага двигателя, перемещающего печатающую головку по бумаге струйного принтера, удвоит плотность точек.

Полушаг, биполярный привод

Полушаговый привод представляет собой комбинацию волнового привода и полного шага привода, при котором одна обмотка запитана, а затем обе обмотки под напряжением, что дает в два раза больше шагов.Формы униполярных сигналов для полушагового привода показаны выше. Ротор совмещен с полюсами возбуждения как для волнового привода, так и между полюсами как для полного шагового привода.

Микрошаги возможны со специализированными контроллерами. Изменяя токи в обмотках синусоидально, многие микрошаги могут быть интерполированы между нормальными положениями. Конструкция шагового двигателя с постоянными магнитами значительно отличается от приведенных выше рисунков.

Желательно увеличить количество полюсов сверх указанного, чтобы получить меньший угол шага.Также желательно уменьшить количество обмоток или, по крайней мере, не увеличивать количество обмоток для простоты изготовления.

Строительство

Конструкция шагового двигателя с постоянными магнитами значительно отличается от приведенных выше рисунков. Желательно увеличить количество полюсов сверх указанного, чтобы получить меньший угол ступеньки. Также желательно уменьшить количество обмоток или, по крайней мере, не увеличивать количество обмоток для простоты изготовления.

Шаговый двигатель с постоянными магнитами, 24-полюсная конструкция штабелирования

Шаговый двигатель с постоянным магнитом имеет только две обмотки, но при этом имеет 24 полюса в каждой из двух фаз. Этот стиль конструкции известен как может складывать . Фазовая обмотка обернута оболочкой из малоуглеродистой стали с пальцами, выведенными к центру.

Одна фаза на временной основе будет иметь северную и южную стороны. Каждая сторона оборачивается к центру пончика двенадцатью встречно-гребенчатыми пальцами, всего 24 полюса.Эти чередующиеся пальцы север-юг будут притягивать ротор с постоянным магнитом.

Если полярность фазы поменять местами, ротор перескочит на 360 ° /24 = 15 ° . Мы не знаем, какое направление, что бесполезно. Однако, если мы активируем φ-1, а затем φ-2, ротор переместится на 7,5 ° , потому что φ-2 смещен (повернут) на 7,5 ° от φ-1. См. Смещение ниже. И он будет вращаться в воспроизводимом направлении, если фазы чередуются.

Применение любой из вышеуказанных форм сигнала приведет к вращению ротора с постоянным магнитом.

Обратите внимание, что ротор представляет собой серый ферритно-керамический цилиндр, намагниченный по показанной 24-полюсной схеме. Это можно увидеть с помощью магнитной пленки или железных опилок, нанесенных на бумажную обертку. При этом цвета будут зелеными как для северного, так и для южного полюсов с пленкой.

(a) Внешний вид штабеля банок, (b) деталь смещения поля

Конструкция шагового двигателя PM в виде штабелированных банок отличительна, и ее легко идентифицировать по сложенным «банкам» (рисунок выше).Обратите внимание на смещение вращения между двухфазными секциями. Это ключ к тому, чтобы ротор следил за переключением полей между двумя фазами.

Резюме: шаговый двигатель с постоянными магнитами

  • Ротор представляет собой постоянный магнит, часто ферритовую втулку, намагниченную множеством полюсов.
  • Конструкция с тарным стеклом обеспечивает множество полюсов от одной катушки с чередующимися пальцами из мягкого железа.
  • Угол ступени от большого до среднего.
  • Часто используется в компьютерных принтерах для продвижения бумаги.

Гибридный шаговый двигатель

Гибридный шаговый двигатель сочетает в себе особенности шагового двигателя с переменным магнитным сопротивлением и шагового двигателя с постоянным магнитом для обеспечения меньшего угла шага. Ротор представляет собой цилиндрический постоянный магнит, намагниченный по оси радиальными зубьями из мягкого железа.

Катушки статора намотаны на чередующиеся полюсы с соответствующими зубьями. Обычно между парами полюсов распределяются две фазы обмотки.Эта обмотка может иметь центральное ответвление для униполярного привода. Центральный отвод достигается с помощью бифилярной обмотки , пары проводов, физически намотанных параллельно, но соединенных последовательно.

Полюса север-юг полярности смены фаз, когда ток фазового привода меняется на противоположное. Биполярный привод необходим для обмоток без отвода.

Гибридный шаговый двигатель

Обратите внимание, что 48 зубьев на одной секции ротора смещены на половину шага относительно другой.(См. Детали полюсов ротора выше. Это смещение зубцов ротора также показано ниже.) Из-за этого смещения ротор фактически имеет 96 чередующихся полюсов противоположной полярности.

Это смещение допускает вращение с шагом 1/96 оборота за счет изменения полярности поля одной фазы. Обычно используются двухфазные обмотки, как показано выше и ниже. Хотя фаз могло быть целых пять.

Зубья статора на 8 полюсах соответствуют зубцам 48 ротора, за исключением отсутствующих зубцов в пространстве между полюсами.Таким образом, один полюс ротора, скажем южный полюс, может быть совмещен со статором в 48 различных положениях. Однако зубцы южного полюса смещены от северных на половину зуба.

Следовательно, ротор может быть совмещен со статором в 96 различных положениях. Это половинное смещение зуба показано на детали полюса ротора выше или на рисунке ниже.

Как будто это было недостаточно сложно, главные полюса статора разделены на две фазы (φ-1, φ-2). Эти фазы статора смещены друг от друга на четверть зуба.Эта деталь видна только на схематических диаграммах ниже. В результате ротор перемещается с шагом в четверть зуба при поочередном включении фаз.

Другими словами, ротор движется с шагом 2 × 96 = 192 шага за оборот для вышеуказанного шагового двигателя.

На приведенном выше рисунке представлен действующий гибридный шаговый двигатель. Однако мы предоставляем упрощенное графическое и схематическое представление, чтобы проиллюстрировать детали, не очевидные выше. Обратите внимание на уменьшенное количество катушек и зубьев в роторе и статоре для простоты.

На следующих двух рисунках мы пытаемся проиллюстрировать вращение на четверть зуба, производимое двумя фазами статора, смещенными на четверть зуба, и смещение на половину зуба ротора. Смещение статора на четверть зуба в сочетании с синхронизацией тока привода также определяет направление вращения.

Схема гибридного шагового двигателя

Особенности схемы гибридного шагового двигателя
  • Верх ротора с постоянным магнитом — это южный полюс, нижний — северный.
  • Зубья ротора с севера на юг смещены на половину зуба.
  • Если статор φ-1 временно находится под напряжением, север вверху, юг внизу.
  • Верхние зубцы статора φ-1 выровнены на север по отношению к верхним южным зубцам ротора.
  • Нижние зубцы статора φ-1 ’выровнены на юг по отношению к нижним северным зубцам ротора.
  • Крутящий момент, приложенный к валу, достаточный для преодоления удерживающего момента, приведет к перемещению ротора на один зуб.
  • Если бы полярность φ-1 была изменена на противоположную, ротор переместился бы на половину зубца, направление неизвестно.Выравнивание будет следующим: верхняя часть южного статора — низ северного ротора, нижняя часть северного статора — южный ротор.
  • Зубья статора φ-2 не совмещены с зубьями ротора, когда φ-1 находится под напряжением. Фактически, зубцы статора φ-2 смещены на четверть зуба. Это обеспечит вращение на эту величину, если φ-1 обесточен, а φ-2 включен. Полярность φ-1 и привода определяют направление вращения.

Последовательность вращения гибридного шагового двигателя

Вращение гибридного шагового двигателя
  • Верх ротора — это постоянный магнит на юг, внизу — на север. Поля φ1, φ-2 переключаемые: вкл., Выкл., Реверс.
  • (a) φ-1 = вкл. = Север-верх, φ-2 = выкл. Выровнять (сверху вниз): φ-1 статор-N: ротор-верх-S, φ-1 ’статор-S: ротор-низ-N. Начальное положение, вращение = 0.
  • (б) φ-1 = выключено, φ-2 = включено. Выровнять (справа налево): φ-2 статор-N-справа: ротор-верх-S, φ-2 ’статор-S: ротор-низ-N. Поверните на 1/4 зуба, полное вращение = 1/4 зуба.
  • (c) φ-1 = реверс (включен), φ-2 = выключен. Выровнять (снизу вверх): φ-1 статор-S: ротор-нижний-N, φ-1 ’статор-N: ротор-верх-S.Поверните на 1/4 зуба от последнего положения. Полный оборот с начала: 1/2 зуба.
  • Не показано: φ-1 = выключено, φ-2 = обратное (включено). Выровнять (слева направо): Общее вращение: 3/4 зуба.
  • Не показано: φ-1 = включено, φ-2 = выключено (то же, что и (a)). Совмещение (сверху вниз): Полное вращение, 1 зуб.

Шаговый двигатель без источника питания с фиксированным моментом представляет собой шаговый двигатель с постоянным магнитом или гибридный шаговый двигатель. Гибридный степпер будет иметь небольшой угол шага, намного меньше, чем у 7.5 ° шаговых двигателей с постоянными магнитами. Угол шага может составлять доли градуса, что соответствует нескольким сотням шагов на оборот. Резюме: Гибридный шаговый двигатель

  • Угол шага меньше, чем у шаговых двигателей с переменным сопротивлением или с постоянными магнитами.
  • Ротор представляет собой постоянный магнит с мелкими зубьями. Северный и южный зубцы смещены на половину зуба для меньшего угла шага.
  • Полюса статора имеют одинаковые мелкие зубья того же шага, что и ротор.
  • Обмотки статора разделены не менее чем на две фазы.
  • Полюса одной обмотки статора смещены на четверть зуба для еще меньшего угла шага.

СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *