Обмен веществ в живых организмах: Обмен веществ и энергии в живых организмах
Обмен веществ и энергии в живых организмах
В здоровом организме взрослого человека наблюдается состояние водного равновесия или водного баланса. Оно заключается в том, что количество воды, потребляемое человеком, равно количеству воды, выводимой из организма. Водный обмен является важной составной частью общего обмена веществ живых организмов, в том числе и человека. Водный обмен включает процессы всасывания воды, которая поступает в желудок при питье и с пищевыми продуктами, распределение ее в организме, выделения через почки, мочевыводящие пути, легкие, кожу и кишечник. Следует отметить, что вода также образуется в организме вследствие окисления жиров, углеводов и белков, принятых с пищей. Такую воду называют метаболической. Слово метаболизм происходит от греческого, что означает перемена, превращение. В медицине и биологической науке метаболизмом называют процессы превращения веществ и энергии, лежащие в основе жизнедеятельности организмов. Белки, жиры и углеводы окисляются в организме с образованием воды НгО и углекислого газа (диоксида углерода) СОг.Если исключен обмен теплотой между системой и окружающей средой, то система называется адиабатически изолированной. Система называется закрытой (замкнутой), если между ней и окружающей средой возможны все виды взаимодействия, кроме обмена веществом. Примером закрытой системы является закрытый сосуд с веществом, баллон с газом и т. п. Открытой называется система, которая может обмениваться с окружающей средой и веществом и энергией. Примером открытой системы является живой организм.
ОБМЕН ВЕЩЕСТВ. Совокупность биохимических реакций, лежащих в основе жизнедеятельности организмов. Биологический обмен веществ представляет собой процессы превращения веществ внешней среды в вещества живого организма и обратные превращения веществ организма в вещества внешней среды. С другой стороны, это процессы, происходящие внутри организма, в отдельных частях, органах и тканях, и, наконец, процессы превращения веществ в клетке и в отдельных клеточных структурах. Без непрерывного взаимодействия организма с внешней средой, без обмена веществ не может быть жизни. Обмен веществ неразрывно связан с обменом энергии. Важнейшую сторону обмена веществ составляют биохимические процессы, и выяснение химизма отдельных звеньев обмена веществ является одним из путей познания жизни.
Окислительно-восстановительные реакции самые распространенные и играют большую роль в природе и технике. Они являются основой жизни на Земле, так как с ними связаны дыхание и обмен веществ в живых организмах, гниение и брожение, фотосинтез в зеленых частях растений и нервная деятельность человека и животных. Их можно наблюдать при сгорании топлива, в процессах коррозии металлов и при электролизе. Они лежат в основе металлургических процессов и круговорота элементов в природе. С их помощью получают аммиак, щелочи, азотную, соляную и серную кислоты и многие другие ценные продукты. Благодаря окислительно-восстановительным реакциям происходит превращение химической энергии в электрическую в гальванических элементах и аккумуляторах. Они широко используются в мероприятиях по охране природы.
Обмен веществ и энергии в живых организмах > [c.16]
В зависимости от объекта исследования биохимию условно подразделяют на биохимию человека и животных, биохимию растений и биохимию микроорганизмов. Несмотря на биохимическое единство всего живого, существуют и коренные различия как химического состава, так и обмена веществ в животных и растительных организмах. Обмен веществ, или метаболизм,—это совокупность всех химических реакций, протекающих в организме и направленных на сохранение и самовоспроизведение живых систем. Известно, что растения строят сложные органические вещества (углеводы, жиры, белки) из таких простых, как вода, углекислый газ и минеральные вещества, причем энергия, необходимая для этой синтетической деятельности, образуется за счет поглощения солнечных лучей в процессе фотосинтеза. Животные организмы, напротив, нуждаются в пище, состоящей не только из воды и минеральных компонентов, но содержащей сложные вещества органической природы белки, жиры, углеводы. У животных проявления жизнедеятельности и синтез веществ, входящих в состав тела, обеспечиваются за счет химической энергии, освобождающейся при распаде (окислении) сложных органических соединений.
Различные клетки многоклеточных организмов отличаются друг от друга, однако каждая растительная клетка имеет общие черты строения и в каждой находятся общие внутриклеточные структуры, выполняющие аналогичные функции. Каждая растительная клетка состоит из цитоплазмы и ядра. Цитоплазма окружена клеточной оболочкой, а ядро — ядерной оболочкой. Цитоплазма — это очень сложная коллоидная система. Дисперсной средой ее служит вода, в которой растворены минеральные соли, сахара, аминокислоты, органические кислоты и многие другие вещества. Во взвешенном состоянии в цитоплазме находятся различные включения и большое число органелл, или структур, разного состава и размера. В последнее время с помощью дифференциального центрифугирования, электронной микроскопии, и других методов исследования удалось установить огромную роль этих структур в обмене веществ и энергии в живых организмах.
Азот. В среднем растительная масса содержит около 1,5% азота от своего веса в сухом состоянии, но содержание его в отдельных частях и органах растения различно. Происходит это потому, что не все органические вещества растения содержат азот. Его, например, нет в клетчатке, которая является главной составной частью древесины и волокнистых веществ.
Обязательным условием жизни является обмен веществ между живым организмом и окружающей средой. Из внешней среды в организм поступают источники энергии, строительный материал для различных синтезов, витамины, минеральные вещества, вода и кислород. Из организма вовне удаляются конечные продукты химических процессов, протекающих в организме углекислый газ, вода и аммиак (в форме мочевины).
Исключительно важна роль тиамина в обмене веществ всех живых организмов. Тиамин функционирует в живых организмах как необходимый кофермент в метаболизме белков, углеводов и жиров при выработке энергии. Он входит в состав двух групп ферментов — карбоксилаз и дегидрогеназ — цикла трикарбоновых кислот. В составе фермента транскетолазы пентозофосфатного пути участвует в переносе активных альдегидных групп, окисляя глюкозу. Образующиеся только в этих биохимических реакциях, пентозы идут на синтез ДНК
Живой организм — система принципиально открытая. Жизнь существует благодаря метаболизму — обмену веществ с окружающей средой. Живое существо дышит и питается, выделяет ряд веществ, получает н отдает тепловую энергию. [c.58]
Что касается способа существования живой материи, то, наряду со всеобщим признанием процесса самообновления всех ее химических составных частей, установлены важные особенности обменных процессов в живых организмах. Наиболее существенной является энергетическая направленность этих процессов. Жизнь может поддерживаться лишь при постоянном потреблении энергии, освобождающейся за счет превращения веществ окружающей среды. Эта энергия необходима для поддержания высокой степени организации биологических структур. Последний процесс находится в диалектическом противоречии с более общим процессом нарастания энтропии системы. Можно сказать, что жизнь — это борьба с энтропией. [c.7]
По учению В. И. Вернадского, биосфера — это единая термодинамическая оболочка Земли, в которой сосредоточена жизнь и постоянно осуществляется взаимодействие живого с неорганическим миром, где живые организмы являются огромной геологической силой, происходят улавливание, накопление и перенос энергии путем обмена веществ между живыми организмами и окружающей их средой. Взаимодействие микроорганизмов, растений, животных обеспечивает непрерывный поток элементов в биогенном обмене вещества на планете, включая элемент жизни — кислород. [c.13]
Любую часть окружающего нас мира, которую мы хотим исследовать и описать с позиций термодинамики, называют системой. В качестве примера интересующих нас термодинамических систем можно назвать клетку, митохондрию, сердце, организм, биосферу. Следует, однако, отметить, что методы термодинамики приложимы только к макроскопическим системам, состоящим из большого числа ча-стиц. Система, которая не может обмениваться со средой ни энергией, ни веществом, называется изолированной если происходит обмен только энергией, то система называется замкнутой, а если и энергией и веществом — открытой. Живой организм в целом система открытая. И лишь в отдельных частях клетки могут существовать условия, характерные для замкнутой и даже изолированной системы. [c.8]
При формулировке первого закона термодинамики предполагается, что энергия может преобразовываться только в теплоту или работу. Однако принципиально энергия системы можег меняться также при изменении количества вещества при удалении вещества из системы оно уносит часть внутренней энергии этой системы, а при поступлении вещества в систему последняя получает дополнительное количество энергии. Системы, в которых возможно изменение количества вещества за счет его притока или выноса из системы, называют открытыми. Если такой процесс невозможен, систему называют замкнутой. Следует отличать еще изолированную систему, в которой невозможен обмен с внещней средой не только веществом, яо и энергией. В изолированных системах энергия всегда остается постоянной. Термодинамическое исследование открытых систем приобрело важное значение при переходе к живым организмам, которые находятся в обмене веществом с внешней средой. Эти системы также широко используются при моделировании непрерывных процессов в химической промышленности, где в химический реактор (систему реакторов) непрерывно поступают исходные вещества, а на выходе— конечные продукты. Теория открытых процессов (систем) достаточно хорошо разработана, поскольку исторически она возникла одновременно с термодинамикой необратимых процессов, однако при дальнейшем изложении теория открытых процессов не будет рассматриваться более глубоко. [c.220]
Обмен веществ включает как синтез, так и распад многих химических соединений в клетках. У животных расщепление компонентов пищи до более простых веществ обеспечивает организм не только энергией, но и химическими соединениями, которые используются затем при синтезе молекул, необходимых для роста. Подобным же образом каждая отдельная клетка любого живого организма синтезирует или поглощает из окружающей среды низкомолекулярные вещества и из них, как из кирпичиков, строит крупные молекулы. В то же время в клетках имеются ферменты, расщепляющие любые синтезированные организмом соединения. В итоге устанавливается стационарное состояние, при котором сложные соединения непрерывно синтезируются в ходе одних процессов и распадаются в ходе других. На этом основана замечательная система самообновления наших тканей. [c.11]
Обмен белков занимает особое место в многообразных превращениях веществ, характерных для всех живых организмов. Выполняя ряд уникальных функций, свойственных живой материи, белки определяют не только микро- и макроструктуру отдельных субклеточных образований, специфику организации клеток, органов и целостного организма (пластическая функция), но и в значительной степени динамическое состояние между организмом и окружающей его средой. Белковый обмен строго специфичен, направлен и настроен, обеспечивая непрерывность воспроизводства и обновления белков организма. В течение всей жизнедеятельности в организме постоянно и с высокой скоростью совершаются два противоположных процесса распад, расщепление органических макромолекул и надмолекулярных структур и синтез этих соединений. Эти процессы обеспечивают катаболические реакции и создание сложной структурной организации живого из хаоса веществ окружающей среды, причем ведущую роль в последнем случае играют именно белки. Все остальные виды обмена подчинены этой глобальной задаче живого—самовоспроизведению себе подобных путем программированного синтеза специфических белков. Для осуществления этого используются энергия обмена углеводов и липидов, строительный материал в виде углеродных остатков аминокислот, промежуточных продуктов метаболизма углеводов и др. [c.409]
Между живым организмом и окружающей его средой происходит постоянный обмен веществ. Закон сохранения вещества и энергии, открытый М. В. Ломоносовым, позволил установить неразрывную связь между обменом веществ и обменом энергии. [c.116]
Обмен веществ ъ растениях неразрывно связан с обменом энергии. Изучением процессов обмена энергии в живых организмах занимается раздел биохимии, который называют биоэнергетикой. [c.15]
В основе процессов жизнедеятельности лежат различные сложные, сопряженные между собой, химические реакции, характеризующиеся строгой закономерностью сочетания и чередования. Эти реакции базируются на законах физики и химии, однако проявление их действия в живом организме имеет характерные отличия. С точки Зрения термодинамики живые организмы представляют с( й открытые системы, которые постоянно обмениваются с внеишей средой как веществом, так и энергией. В закрытых системах обмен ограничен энергией, а обмен веществом отсутсгаует. В изолированных системах обмен со внешней средой ни вэдеством, ни энергией ие происходит. Такие типы систем названы замкнутыми. [c.207]
По-видимому, ключом к объяснению возникновения жизни на Земле является понимание явления, известного под названием естественный отбор . Естественный отбор должен был лежать в основе перехода к метаболизму от набора случайных химических реакций. Метаболизм (обмен веществ) присущ только жИвым организмам, он представляет собой ряд молекулярных превращений, в результате которых организм получает энергию для жизни, роста и воспроизводства. [c.30]
БИОХИМИЯ (биологическая химия). Наука о химическом составе живых организмов (статическая Б.) и химических превращениях веществ и энергии, которые лежат в основе жизнедеятельности организмов, об обмене веществ в них (динамическая В.). Но объектам исследования Б. разделяют обычно па Б. растений, Б. животных и Б. микроорганизмов. [c.45]
Однако объяснять причину старения живого организма только старением его коллоидов нельзя. Как известно, в организме происходит непрерывный обмен веществ, процесс ассимиляции и диссимиляции, разрушение органической субстанции и образование ее. И хотя протоплазма всех организмов находится в коллоидном состоянии, причины старения их кроются не в физико-химических, а более сложных, биологических процессах. В самом деле, в любом растворе того или иного коллоида не наблюдается специфического, присущего именно живым организмам обмена веществ и энергии, явлений ассимиляции и диссимиляции. Если у коллоидов протоплазмы в процессе ее жизнедеятельности и наблюдается постепенное понижение водосвязывающей способности, уменьшение стойкости и изменение других свойств, сходных с изменениями коллоидных растворов, то они происходят в результате направленного изменения химического состава коллоидов организма, определяемых процессами обмена веществ. [c.489]
Изменения температуры приводят к биохимическим эффектам всего лишь двух основных типов. Во-первых, изменение средней кинетической энергии атомов и молекул в живом организме будет сказываться на скорости химических реакций, составляющих в совокупности обмен веществ. Несколько позже мы рассмотрим физическую основу этой довольно значительной зависимости скорости реакций от температуры. [c.206]
Однако объяснять причину старения лсивого организма только старением его коллоидов нельзя. Как известно, в организме происходит непрерывный обмен веществ, процесс ассимиляции и диссимиляции, разрушение органической субстанции и образование ее, И хотя протоплазма всех организмов на.ходится в коллоидном состоянии, причины старения их кроются не в физико-химических, а более сложных, биологических, процессах. В самом деле, в любом растворе того или иного коллоида не наблюдается специфического, присущего именно живым организмам обмена веществ и энергии, явлений ассимиляции и диссимиляции. Если у коллоидов прото- [c.398]
На этой схеме основные питательные вещества для высокоорганизованных живых организмов представлены углеводами, липидами и белками они превращаются через многие другие более простые соединения в углекислый газ, воду и соединения азота. Эти превращения осуществляются посредством реакций, катализируемых ферментами. Основная роль ферментов — катализ реакций обмена, за счет которых осуществляется сохранение, рост и репродукция живых организмов. Обмен (метаболизм) включает два точно сбалансированных процесса, а именно анаболизм, или использование энергии и материалов для химических синтезов, и катаболизм, или расщепление субстратов с освобождением энергии. Каждая ступень в сложной [c.112]
В связи с указанным, многие радиоактивные изотопы нашли широкое применение в качестве радиоактивных индикаторов, или меченых атомов. С использованием последних изучаются вопросы биологии (в частности, обмен веществ в живых организмах). Метод нашел разностороннее использование в сельском хозяйстве. Например, изотопные индикаторы позволяют наблюдать за ростом корней растений непосредственно в почве, успешно изучаются усвояемость удобрений растениями, кормов — животными и т. д. (о меченом атоме С-14 см. гл. 23, 5). Изотопные индикаторы играют важную роль в исследованиях трения, износа деталей машин, системы рациональной смазки действующих механизмов. Они позволяют дистанционно (на расстоянии) контролировать влажность зерна в потоке, плотность и толщину проката и вообще листового материала самого разнообразного характера. Для этих целей широко используется изотоп Ат (америций, моноэнер-гетический у-излучатель). В космонавтике эффективны автономные генераторы тепловой энергии, построенные на основе изотопов Ри-238, Ст-232 и Ст-244. Эти изотопы находят также применение в медицине. Радиация используется в поисках полезных ископаемых (у-каротаж). В последнее время для аналогичных целей начинают широко применять нейтроны. В качестве источника таковых для обнаружения и оценки газовых и нефтяных месторождений заслужил внимание изотоп калифорния СГ. Область практического применения радиоактивных индикаторов непрерывно расширяется. [c.23]
Обмен веществ, или метаболизм,—это закономерный порядок превращения веществ и энергии в живых системах. Обмен веществ, происходящий в организме, и организма с ок-ружаюн ей внешней средой—совокупность всех химических реакций, направленных на самоорганизацию и самовоспроизведение это важнейшее свойство жизни и непременный ее приз-как. [c.353]
Процессы, протекающие в биологических объектах, принадлежат к так называемым открытым системам, в которых происходит постоянный обмен веществ и энергии с внешней средой. Обмен веществ в открытых системах обеспечивает непрерывное поступление и удаление различных метаболитов. В результате этого в живом организме многие реакции не достигают стадии динамического равновесия, как это происходит в замкнутых системах, например in vitro , а протекают непрерывно, находясь в состоянии стабильного превалирования прямых реакций. [c.115]
Экосистема — единый природный комплекс, образованный живыми организмами и средой их обитания, в котором живые и косные компоненты связаны обменом веществ и энергии. Экосистема является саморазвивающейся термодинамически открытой системой. В отечественной литературе используется эквивалентное понятие «биогеоценоз». [c.295]
АДЕНОЗИНТРИФОСФОРНАЯ КИСЛОТА (АТФ). Основное соединение, в котором запасается и переносится энергия, необходимая для осуществления синтетических процессов в обмене веществ, а также для выполнения работы нивыми организмами. В состав АТФ входят остатки аденина, углевода рибозы и три остатка фосфорной кислоты. Энергия, высвобождаемая АТФ, может переноситься почти без потерь на другие соединения или использоваться для синтеза белков, нуклеиновых кислот, углеводов, жиров, витаминов и многих других соединений. Энергия АТФ потребляется также при мышечном сокращении, в нервных клетках и при других видах работы в живых организмах. АТФ в организме образуется из адепозиндифосфорной кислоты (АДФ) и минеральной фосфорной кислоты за счет энергпп, которая выделяется при окислении различных органических веществ в живых клетках или при фотосинтезе за счет световой энергии. Во всех этих процессах энергия, как правило, не теряется, а переходит в особый вид химической энергии, заключенной в фосфатных связях АТФ. При окислении в процессе дыхания грамм-молекулы глюкозы, например, может образоваться до 30 молекул АТФ. [c.14]
Одна из особенностей живых организмов состоит в том, что все они представляют собой открытые системы, которые способны извлекать, преобразовывать и использовать энергию окружающей среды либо в форме органических питательных веществ (хемотрофы), либо в форме энергии солнечного излучения (фототрофы). Обмен энергией в организме тесно связан с обменом веществ (метаболизмом). Метаболизм можно определить как совокупность ферментативных химических реакций, которые могут протекать в клетке. Активность ферментов, катализирующих эти реакции, регулируется с помощью чувствительной системы взаимосвязанных механизмов, поэтому метаболизм представляет собой высококоординированную, целенаправленную клеточную активность. Он выполняет следующие функции [c.189]
Установление химического состава растений, открытие ферментов и выяснение их роли в обмене веществ, открытие витаминов и гормонов, развитие химии аминокислот и белков, жиров и углеводов создали возможность формирования динамической биохимии, с развитием которой стали создаваться единые представления об общих закономерностях процессов обмена зе> щестз и превращений энергии в живых организмах. [c.6]
Конструктивный и энергетический обмен. Физиология изучает процессы, протекающие в живом организме, и их закономерности. Современная материалистическая физиология основана на принципе единства организма с окружающей средой. Взаимодействие организма со средой проявляется в обмене веществ и энергии (метаболизм). Он включает в себя два процесса конструктивный обмен (ассимиляция, или анаболизм) и энергетический (диссимиляция, или катаболизм). В основе конструктивного обмена лежат биохимические реакции, в процессе которых усваиваются вещества, поступающие из окружающей среды, и идет создание биомассы клетки. Сущность энергетического обмена заключается в разрушении веществ, содержащихся в организме, преимущественно в результате гидролитических и окислительных процессов, сопровождающихся выделением энергии, необходимой для биосинтеза. Оба процесса в клетке идут одновременно и сочетаются друг с другом. Энергия, полученная клеткой в процессе обмена веществ, акку.мулируется в соединениях, содержащих химические связи, при разрыве которых выделяется большое количество энергии (макроэргические). Часто это соединения с фосфатными связями, например аденозинтрифос-фат (АТФ). По мере надобности эти вещества подвергаются гидролитическому распаду, сопровождающемуся выделением энергии. [c.210]
Совокупность химических реакций, протекающих в живом организме, называется обменом веществ, или метаболизмом (от греческого слова т 1аЪо1е — изменение). Это реакции самых различных типов. Рассмотрим, например, что происходит с пищей, потребляемой человеком. Пища может содержать сложные углеводы, в частности крахмал которые расщепляются в процессе пищеварения на простые сахара и затем через стенки желудочно-кишечного тракта попадают в ток крови. Далее эти простые сахара в печени превращаются в гликоген (животный крахмал), имеющий ту же формулу, что и обычный растительный крахмал (СдНюОб) , где X — большое число. Гликоген и другие полисахариды — важные источники энергии в организмах животных. При окислении кислородом они образуют двуокись углерода и воду одна часть освобождаемой при этом энергии идет на производство работы, а другая — на согревание тела живого организма. [c.690]
Итак, любой живой организм является таким телом, в основе существования которого лежит специфический обмен веществ. Этот обмен веществ является наиболее общим, определяющИхМ фактором для всех других элементарных свойств живого организма — питания, роста, размножения, раздражимости, движения и проч. Любой организм, чтобы осуществлять всю совокупность жизненных проявлений, вынужден непрерывно расходовать определенное количество энергии. Эта энергия освобождается в результате распада органических веществ, входящих в состав протоплазмы. Следовательно, организмы непрерывно разрушают свою собственную протоплазму. Эти процессы распада органических веществ, входящих в состав протоплазмы, называются процессами диссимиляции. [c.9]
2.3. Обмен веществ и энергии. Антропология и концепции биологии
2.3. Обмен веществ и энергии
Вся совокупность химических реакций, протекающих в живых организмах, называется обменом веществ, или метаболизмом. В результате этих реакций энергия, запасенная в химических связях, переходит в другие формы, т. е. обмен веществ всегда сопровождается обменом энергии. Первичным источником энергии для всего живого на Земле служит Солнце.
Многие организмы имеют уникальные метаболические пути, однако наиболее поразительно то общее, что присуще процессам метаболизма в живой природе. Несмотря на величайшее разнообразие живых организмов, отчетливо проявляется единство этих процессов. Выделяют две группы процессов метаболизма.
Анаболизм (ассимиляция) – совокупность процессов синтеза, идущих с потреблением энергии.
Катаболизм (диссимиляция) – совокупность процессов распада, сопровождающихся выделением энергии.
Анаболизм и катаболизм самым тесным образом взаимосвязаны: катаболические реакции дают «сырье» и энергию для анаболических процессов, в которых эта энергия запасается.
Все живые организмы можно разделить на группы, в зависимости от типа ассимиляции (рис. 2.5).
Автотрофы – организмы, способные самостоятельно синтезировать органические вещества из неорганических.
Рис. 2.5. Классификация типов анаболизма
Гетеротрофы – организмы, не способные синтезировать органические вещества из неорганических и нуждающиеся в поступлении готовых органических соединений.
Среди протистов можно выделить группу автогетеротрофных организмов, которые в зависимости от условий осуществляют либо автотрофный, либо гетеротрофный способ питания.
Фотоавтотрофы – организмы, использующие для синтеза энергию Солнца.
Хемоавтотрофы – организмы, использующие для синтеза энергию химических реакций.
Совокупность реакций катаболизма, протекающих во всех живых клетках, представляет собой разнообразные процессы биологического окисления. Поскольку запасенная в процессе ассимиляции энергия недоступна для непосредственного использования клеткой, основной функцией процесса биологического окисления является обеспечение организма энергией в доступной форме (прежде всего в виде АТФ). В природе организмы используют два пути получения энергии: аэробный распад (дыхание), проходящий в присутствии кислорода, и анаэробный распад (брожение), проходящий без кислорода (рис. 2.6). Соответственно организмы, реализующие эти пути, называются аэробами и анаэробами.
Рис. 2.6. Классификация типов катаболизма
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРесУченые нашли связь между обменом жиров и продолжительностью жизни
Международная группа ученых продемонстрировала влияние липидов на продолжительность жизни. Ученые исследовали 669 образцов из 6 различных тканей 35 видов млекопитающих и пришли к выводу, что липидный метаболизм оказывает существенное влияние на максимальную продолжительность жизни того или иного вида. Эта работа проливает свет на молекулярные механизмы определения продолжительности жизни и механизмы, лежащие в основе процессов старения.
Максимальная продолжительность жизни — это стабильная характеристика того или иного биологического вида. Несмотря на то, что за последние пару сотен лет средняя продолжительность жизни значительно возросла, максимальная продолжительность жизни человека не изменилась и составляет приблизительно 120 лет. Если мы хотим жить дольше, необходимо понять, от чего зависит наш максимальный возраст.
Максимальная продолжительность жизни даже среди близкородственных видов млекопитающих может варьировать в десятки раз. Но природные механизмы и причины таких различий до сих пор были неизвестны. Большая группа ученых из России, Китая, Германии, Франции, США и Южной Африки под руководством профессора Сколтеха Филиппа Хайтовича проанализировали липидный состав тканей мозга, почек, печени, сердца, мышц у 35 видов млекопитающих. Технология масс-спектрометрии с последующим биоинформатическим анализом позволили выявить различия липидного состава между разными тканями и разными видами живых организмов. Полученные результаты продемонстрировали связь липидного обмена веществ с максимальной продолжительностью жизни того или иного вида.
Также ученые обнаружили, что химическое строение липидов оказывает влияние на продолжительность жизни. Например, такие структурные липиды, как сфинголипиды, входящие в состав клеточной мембраны долгоживущих видов, более насыщены водородом, чем сфинголипиды короткоживущих видов. Ученые объясняют этот феномен большей устойчивостью насыщенных липидов к окислительному стрессу, которому наши клетки подвергаются при старении. В то же время для липидов, участвующих в энергетических процессах, зависимость ровно противоположная. Ненасыщенных энергетических липидов у долгожителей больше, чем у короткоживущих видов. Авторы статьи говорят, что это связано с тем, что такие липиды клеткам сложнее превращать в энергию, а замедленный обмен веществ — одна из характеристик долгоживущих видов.
Екатерина Храмеева, научный сотрудник Сколтеха, младший научный сотрудник Учебно-научного центра «Биоинформатика» Института проблем передачи информации РАН, один из авторов исследования: «Нам удалось найти связь между продолжительностью жизни вида и особенностями его липидного метаболизма. Этот результат интересен сам по себе, но ещё более ценными являются полученные нами данные — липидомы 35 видов млекопитающих. Такой набор данных прекрасно подходит для изучения эволюции липидома, над чем мы и работаем в данный момент. Ранее эволюцию липидома изучали лишь для 4 видов. Наши данные для 35 видов, наверняка, позволят получить новые, более интересные результаты.»
Результаты исследования опубликованы в журнале Nature Scientific Reports.
Обмен веществ и энергии
Обмен веществ — это совокупность протекающих в живых организмах химических превращений, обеспечивающих их рост, развитие, процессы жизнедеятельности, воспроизведение потомства, активное взаимодействие с окружающей средой. Во всех живых организмах, от самых примитивных до самых сложных, каким является человек, основа жизни — это обмен веществ и энергии. Благодаря ему каждый организм не только поддерживает своё существование, но развивается и растет. Обмен веществ определяет цикличность жизни: рождение, рост и развитие, старение и смерть.
Пластический и энергетический обмен
Под пластическим обменом понимают такие процессы, в ходе которых в клетках создаются новые соединения и новые структуры, характерные для данного организма. Под энергетическим обменом понимают такие превращения энергии, в ходе которых в результате биологического окисления выделяется энергия, необходимая для жизнедеятельности клеток, тканей и всего организма в целом. Результатом биологического окисления является образование углекислого газа, аммиака, соединений фосфора, натрия, хлора, которые выводятся из организма. Эта заключительная стадия обмена веществ. Она осуществляется кровью, легкими, потовыми железами, органами мочевыделения.
Обмен белков
Пищевые белки в ходе подготовительной стадии обмена расщепляются сначала в желудке пепсином, а затем в двенадцатиперстной кишке ферментом поджелудочной железы трипепсином до аминокислот. Аминокислоты через кровеносные капилляры ворсинок поступают в печень. Здесь избыточные аминокислоты теряют свой азот и превращают в жиры и углеводы. В клетках из аминокислот строятся белки тела. Белки входят в состав ядер, цитоплазмы и мембран клеток. Они являются ферментами, входят в состав антител. Белки принимают участие в свертывание крови и в транспортировке газов. Белки входят в состав костей.
Обмен жиров
В органах пищеварения во время подготовительной фазы обмена жиры распадаются на глицерин и жирные кислоты. В эпителии кишечника синтезируется жир, характерный для организма, и через лимфатическую систему направляется в жировое депо и клетки, где он используется как запасное вещество и строительный материал. Жиры выполняют в организме много функций. Они входят в состав клеточных мембран, в них растворяются некоторые витамины. Из жиров образуются некоторые гормоны и биологически активные вещества. В организме человека выполняют защитную роль.
Обмен углеводов
Сложные углеводы начинают распадаться в ротовой полости под действием ферментов слюны — амилазы. В двенадцатиперстной кишке под действием ферментов, выделяемых поджелудочной железой, они расщепляются до глюкозы и других простых углеводов. В тонкой кишке продукты распада всасываются кишечными ворсинками в кровь и направляются в печень. Здесь излишки сахаров задерживаются и превращаются в гликоген и другие соединения, а оставшаяся часть глюкозы в необходимом количестве направляется в кровь и распределяется между клетками тела. В организме глюкоза прежде всего является источником энергии.
Обмен воды в организме
Вода — универсальный растворитель. Все жизненные процессы, все биохимические реакции происходят в водной среде. Внутренняя среда человека содержит до 90% воды. Вода в организме либо химически связана с другими соединениями, либо содержит в себе растворенные минеральные соли и органические вещества. Пищеварительные соки содержат воду. Транспорт питательных веществ и кислорода осуществляется в жидкой среде. Продукты распада тоже выносятся водой. Таким образом, в организме поддерживается определенный баланс между поступающей и выделяемой водой.
Обмен минеральных солей
Ни вода, ни минеральные соли не являются источниками энергии, но они необходимы для осуществления важных функций организма. Минеральные соли содержатся в клеточных ядрах и цитоплазме, в жидкостях, образующих внутреннюю среду, в пищеварительных соках и других биологических жидкостях.
Другие заметки по биологии
Метаболизм | справочник Пестициды.ru
Cхема метаболических процессовCхема метаболических процессов
Процессы метаболизма
Метаболизм включает две группы жизненно важных процессов – катаболизм (энергетический обмен) и анаболизм (биосинтез, или пластический обмен).[3]
- Катаболизм – это совокупность процессов расщепления питательных веществ, которые происходят в основном за счет реакций окисления. В результате выделяется энергия. Основными формами катаболизма у микроорганизмов являются брожение и дыхание. При брожении происходит неполный распад сложных органических веществ с выделением небольшого количества энергии и накоплении богатых энергией конечных продуктов. При дыхании (аэробном) обычно осуществляется полное окисление соединений с выходом большого количества энергии.[3]
- Анаболизм объединяет процессы синтеза молекул из более простых веществ, которые присутствуют в окружающей среде. Реакции анаболизма связаны с потреблением свободной энергии, которая вырабатывается в процессах дыхания, брожения. Для протекания пластического обмена необходимо поступление в организм питательных веществ, на основе которых при участии выделенной в ходе катаболизма энергии обновляются структурные компоненты клеток, происходит рост и развитие.[3]
Катаболизм и анаболизм протекают параллельно, многие их реакции и промежуточные продукты являются общими. Тем не менее, на протяжении разных периодов существования интенсивность пластического и энергетического обмена неодинакова. Так, у насекомых в период размножения, линьки, во время ранних фаз развития (яйцо, личинка) синтетические процессы преобладают над процессами распада. В тоже время, определенные дегенеративные изменения в организме (старение, заболевания) способны приводить к преобладанию интенсивности катаболизма над анаболизмом, что порой угрожает гибелью живому объекту.[3](фото)
Превращение сульфооксида в сульфонПревращение сульфооксида в сульфон
Использовано изображение:[2]
Метаболизм пестицидов
Метаболизм пестицидов – превращения пестицидов под влиянием продуктов жизнедеятельности различных живых организмов – бактерий, грибов, высших растений и животных.[4]
В результате биотрансформации токсичных веществ в большинстве случаев образуются менее токсичные продукты (метаболиты), более растворимые и легко выводимые из организма. В некоторых случаях токсичность метаболитов оказывается выше, чем попавших в организм веществ. Обмен промышленных ядов возможен за счет реакций окисления, восстановления, гидролитического расщепления, метилирования, ацилирования и др.[1]
В метаболизме пестицидов большое значение имеют реакции окисления атома серы в молекулах некоторых веществ, что характерно, например, для инсектицидов из группы производных карбаминовой и фосфорной кислот. Окисление серы у этих соединений происходит независимо от структуры остальной части молекулы, при этом вначале образуется соответствующий сульфооксид, а затем сульфон: (фото) Продукты окисления не отличаются по токсичности от исходного вещества, но они значительно более стойки к гидролизу.
Окисление тионофосфатовОкисление тионофосфатов
А — тионофосфат, В – фосфат, 1 и 2- свободные радикалы, 3 — кислотный остаток
Использовано изображение:[2]
Реакции метаболизма, происходящие в растениях, обусловливают длительное инсектицидное действие для ряда эфиров фосфорных кислот с тиоэфирным радикалом. Окисление тионофосфатов в различных организмах рассматривается как активирующая ступень в процессах метаболизма этих веществ.[2](фото)
Токсичность продукта реакции для млекопитающих и насекомых увеличивается в десятки и сотни раз по сравнению с исходным веществом. Однако эти токсичные метаболиты легко гидролизуются и поэтому сохраняются в биологических средах непродолжительное время.[2]
Близкие статьи
Ссылки:
Все статьи о токсикологии в разделе: Основы токсикологии
Статья составлена с использованием следующих материалов:
Литературные источники:
1.Голдовская Л.Ф. Химия окружающей среды. М.: Мир; БИНОМ. Лаборатория знаний, 2007. – 295 с
2.Груздев Г.С. Химическая защита растений. Под редакцией Г.С. Груздева — 3-е изд., перераб. и доп. — М.: Агропромиздат, 1987. — 415 с.: ил.
3.Липунов И.Н., Первова И.Г. Основы микробиологии и биотехнологии: курс лекций. – Екатеринбург: Урал. гос. лесотехн. Университет, 2008. – 231 с
4.Мельников Н.Н., Новожилов К.В., Белан С.Р., Пылова Т.Н. Справочник по пестицидам — М.: Химия, 1985. — 352 с.
Свернуть Список всех источниковОбмен веществ и превращение энергии- признак живых оргвнизмов. Различие организмов по способу питания.
10 класс. Общая биология.
Тема урока. Обмен веществ и превращение энергии – признак живых организмов. Различие организмов по способу питания.
Задачи урока:
— формировать информационную компетентность; расширить знания о видах обмена веществ и энергии, дать представление о клетке как открытой системе;
— формировать диалектическое мировоззрение; доказать параллельность протекания процессов ассимиляции и диссимиляции; развивать умение делать выводы;
-развивать коммуникативную, самообразовательную компетентность; умение работать в группах.
Тип урока: комбинированный.
Методы обучения: проблемный, репродуктивный, поисковый.
Педагогические технологии:
* Проблемного обучения
* Групповой деятельности
Оборудование и материалы: материалы, необходимые для работы в группах, общая схема метаболизма – опорный конспект.
Базовые понятия и термины: ассимиляция, диссимиляция, метаболизм, обмен веществ, пластический обмен, энергетический обмен, макроэргические связи, автотрофы, хемотрофы, фототрофы, гетеротрофы.
Концепция урока: показать клетку как открытую систему, которая получает энергию извне и тратит ее на процессы жизнедеятельности. Обратить внимание на разные источники энергии, которые могут использовать клетки и в связи с этим выйти на основные способы питания живых организмов: фототрофный, гетеротрофный и хемотрофный. А затем показать связь процессов синтеза распада в клеточном обмене веществ, обратив внимание на роль молекул АДФ и АТФ в этом процессе.
Структура и содержание урока.
I. Организационный момент.
«…Луч солнца приводит в движение и чудовищный маховик паровой машины, и кисть художника, и перо поэта».
К. А. Тимирязев
«Человек живет не тем, что он съедает, а тем, что переваривает. Положение это одинаково справедливо относится как к уму, так и к телу»
Бенджамин Франклин
II. Актуализация опорных знаний и мотивация учебной деятельности.
1. Группа слов:
— окружающая среда
— Солнце
— клетка
— процессы жизнедеятельности
— обмен веществ
— энергия
— открытая система
Задание: установить причинно-следственные связи, выделить ключевое слово.
2. Работа с опорным конспектом. Цель: дать общее представление о процессах жиз-недеятельности, обмене веществ. Подведение учащихся к выводу о том, что клетка -откры-тая система; о взаимосвязи протекающих процессов.
3. Что знаете из данной темы? Что хотите узнать? Использование структурно-рефлексивных подходов к изучению темы
III. Изучение нового материала.
1. Погружение в тему. Использование «Логической цепочки», что позволяет рассмотреть новый материал в логической последовательности (приложение 1).
2. Интерактивная форма обучения «Ажурная пилка».
Распределение класса по группам.
1 группа.
Основные положения современной клеточной теории.
Работа с учебником с. 38, 39 (3 абзаца) статья «Клеточная теория».Выделить второе поло-жение, свидетельствующее о едином плане строения клеток, закономерном протекании процессов жизнедеятельности – обмене веществ. Выписать второе положение.
2 группа.
Клетка – как открытая система.
Параграф 11 с. 58 (1-3 абзац). Статья «Метаболизм»
Найти ответы на вопросы:
— Благодаря чему возможно существование живых организмов?
— Что такое метаболизм?
— Из чего он складывается?
Составить схему «Обмен веществ».
3 группа.
Характеристика обмена веществ. Общие закономерности.
Параграф 11с. 58 (4абзац).
Найти ответы на вопросы:
— Уравновешены ли процессы ассимиляции процессами диссимиляции?
Аргументируйте.
— Без чего невозможен обмен веществ?
— Как происходит обмен веществ между организмами и окружающей средой?
— В виде чего аккумулируется энергия, выделяющаяся при диссимиляции?
Выписать общие закономерности обмена веществ.
4 группа.
Классификация живых организмов в зависимости от формы используемой энергии
для удовлетворения энергетических потребностей.
Параграф 11 статья «Типы обмена веществ». С. 59 (5,6,7 абзацы)
Ответить на вопросы:
— Какие организмы называют: — гетеротрофами?
— фотоавтотрофами?
— хемоавтотрофами?
Составить схему «Классификация организмов по способам питания».
5 группа.
Планетарная роль фотосинтетиков.
Параграф 11 с. 60 статья «Планетарная роль фотосинтетиков».
Ответить на вопросы:
— В каких формах существует энергия в биологических системах?
— Как может происходить превращение энергии; из какой формы в какую?
— Возможно ли превращение энергии химических связей в световую энергию?
Составить схему «Формы существования энергии и взаимопревращение».
6 группа.
АТФ – универсальный источник энергии.
Параграф 6 с. 33 (последний абзац), с. 34-35, статья «Аденозинфосфорные кислоты».
Ответить на вопросы:
— Каким образом молекула АТФ может переносить энергию из процессов распада в
процессы синтеза?
— Как структура молекулы АТФ соответствует ее функциям?
— В виде чего запасается энергия, образовавшаяся в ходе реакции энергетического
обмена?
Показать формулу АТФ; реакцию освобождения энергии.
3. Переход из группы в группу.
План рассмотрения темы.
Основные положения клеточной теории.
Клетка – как открытая система.
Характеристика обмена веществ. Общие закономерности.
Классификация живых организмов в зависимости от формы используемой энергии для удовлетворения энергетических потребностей.
Планетарная роль фотосинтетиков.
АТФ – универсальный источник энергии.
IV. Закрепление изученного материала. Рефлексия урока.
Работа с заданием «Подумайте!» (приложение 1).
— Почему ассимиляция и диссимиляция – две стороны единого процесса обмена веществ и превращения энергии в живых организмах?
V. Подведение итогов, выставление оценок. Домашнее задание (приложение).
Приложение № 1. Обмен веществ и превращение энергии – признак живых организмов. Различие организмов по способу питания.
1. Логическая цепочка:
Все живые организмы нуждаются в энергии для того, чтобы осуществлять процессы жизнедеятельности, но могут использовать разные источники энергии.
К автотрофам относятся две группы организмов: фототрофы и хемотрофы. Фототрофы используют для синтеза органических соединений солнечную энергию, а хемотрофы- энергию окисления неорганических соединений.
Другие организмы — гетеротрофы — используют энергию кем-то синтезированной уже органики.
В любой клетке постоянно происходят процессы синтеза, которые требуют затрат энергии, и процессы распада, в которых эта энергия выделяется.
Процессы синтеза и распада органических соединений связаны с помощью особых энергетических молекул – АТФ.
2. Общая закономерность: ассимиляция и диссимиляция – это две взаимосвязанные стороны единого процесса обмена веществ и превращение энергии в живых организмах, что подтверждает справедливость закона единства и борьбы противоположностей.
Ж и з н ь е с т ь д в и ж е н и е.
3. ПОДУМАЙТЕ ! На первый взгляд, созидающим процессом является пластический обмен. Если условно отсечь энергетический обмен и считать, что все заканчивалось бы образованием все нового и нового органического вещества без его расщепления, возможна ли была бы жизнь? Ответ обоснуйте.
ДОМАШНЕЕ ЗАДАНИЕ
Обязательный минимум : изучить параграф 11.
Тренировочное задание: воспроизведение опорного конспекта.
Творческое задание: найти биологическую ошибку, написать сверху правильный ответ или зачеркнуть лишние слова. Обосновать правильность своего суждения.
— Совокупность реакций расщепления простых соединений, которая сопровождается поглощением энергии, называют метаболизмом.
— Растения, грибы, бактерии и большинство животных относят к гетеротрофам.
— Молекула АТФ – это полипептид, который состоит из остатков азотистого основания-аденина, углевода (глюкозы) и нескольких остатков фосфорной кислоты.
РЕФЛЕКСИЯ УРОКА
Что нового вы узнали на уроке?
Где можете использовать полученные знания?
Лабиринт. Определи зашифрованное слово.
Ответ §10. Обмен веществ и энергии
85) Сформулируйте и запишите определение
Ответ: Обмен веществ – это получение организмом из внешней среды нужных веществ и удаление из организма во внешнюю среду ненужных веществ.
86) Каково значение обмена веществ для живого организма?
87) Какие процессы происходят в хлоропластах и митохондриях клетки?
-
Ответ: В хлоропластах – синтез органических веществ, из неорганических на свету (световой день), при использовании воды и углекислого газа. Побочный продукт – кислород (О2).
В митохондриях – происходит распад органических веществ и синтез энергии.
88) Заполните схему «Обмен веществ у животных»
-
Ответ:
↓Вещества, образовавшиеся в результате обмена веществ:
Вода
Углекислый газ
Продукты распада
↓Вещества, поступающие в организм:
Кислород
Белки
Жиры
Углеводы
Вода
Минеральные соли
Процессы, происходящие при обмене веществ:
Процессы жизнедеятельности
89) Заполните схему «Обмен веществ у растений»
-
Ответ:
↓Вещества, поступающие в организм:
Кислород
Углекислый газ
Свет
Вода, с растворенными веществами
↓Вещества, образовавшиеся в результате обмена веществ:
Углекислый газ
Кислород
Поры воды
Процессы, происходящие при обмене веществ:
Дыхание
Фотосинтез
90) Дайте определения
-
Ответ: Теплокровные животные – это животные, температура тела которых не зависит от температуры окружающей среды.
Холоднокровные животные – это животные, температура тела которых зависит от температуры окружающей среды.
91) Приведите примеры животных, которые относятся к этим группам
-
Ответ: Теплокровные: лев, волк, человек, медведь
Холоднокровные: окунь, лягушка, черепаха
6.1A: роль энергии и метаболизма
- Последнее обновление
- Сохранить как PDF
- Ключевые моменты
- Ключевые термины
- Энергия и метаболизм
- Биоэнергетика и химические реакции
- Клеточный метаболизм
Всем организмам требуется энергия для выполнения задач; метаболизм — это набор химических реакций, которые высвобождают энергию для клеточных процессов.
Цели обучения
- Объяснить важность обмена веществ
Ключевые моменты
- Все живые организмы нуждаются в энергии для роста и воспроизводства, поддержания своей структуры и реагирования на окружающую среду; метаболизм — это набор процессов, делающих энергию доступной для клеточных процессов.
- Метаболизм — это комбинация химических реакций, которые являются спонтанными и высвобождают энергию, и химических реакций, которые не являются спонтанными и требуют энергии для протекания.
- Живые организмы должны получать энергию через пищу, питательные вещества или солнечный свет, чтобы выполнять клеточные процессы.
- Транспортировка, синтез и расщепление питательных веществ и молекул в клетке требует использования энергии.
Ключевые термины
- метаболизм : полный набор химических реакций, происходящих в живых клетках
- биоэнергетика : изучение преобразований энергии, происходящих в живых организмах
- энергия : работоспособность
Энергия и обмен веществ
Все живые организмы нуждаются в энергии для роста и воспроизводства, поддержания своих структур и реагирования на окружающую среду.Метаболизм — это набор поддерживающих жизнь химических процессов, которые позволяют организмам преобразовывать химическую энергию, хранящуюся в молекулах, в энергию, которая может использоваться для клеточных процессов. Животные потребляют пищу, чтобы восполнить энергию; их метаболизм расщепляет углеводы, липиды, белки и нуклеиновые кислоты, чтобы обеспечить химическую энергию для этих процессов. В процессе фотосинтеза растения преобразуют световую энергию солнца в химическую энергию, хранящуюся в молекулах.
Биоэнергетика и химические реакции
Ученые используют термин биоэнергетика, чтобы обсудить концепцию потока энергии через живые системы, такие как клетки.Клеточные процессы, такие как построение и разрушение сложных молекул, происходят в результате пошаговых химических реакций. Некоторые из этих химических реакций являются спонтанными и высвобождают энергию, тогда как другие требуют энергии для протекания. Все химические реакции, происходящие внутри клеток, включая те, которые используют энергию, и те, которые высвобождают энергию, являются метаболизмом клетки.
Рисунок \ (\ PageIndex {1} \): Большая часть энергии прямо или косвенно исходит от Солнца. : Большинство форм жизни на Земле получают энергию от Солнца.Растения используют фотосинтез для улавливания солнечного света, а травоядные животные поедают эти растения для получения энергии. Плотоядные животные поедают травоядных, а разлагатели переваривают растительную и животную материю.Клеточный метаболизм
Любая задача, выполняемая живыми организмами, требует энергии. Энергия необходима для выполнения тяжелой работы и упражнений, но люди также расходуют много энергии во время размышлений и даже во время сна. При каждом действии, требующем энергии, происходит множество химических реакций, обеспечивающих химическую энергию системам тела, включая мышцы, нервы, сердце, легкие и мозг.
Живые клетки каждого организма постоянно используют энергию для выживания и роста. Клетки расщепляют сложные углеводы на простые сахара, которые клетка может использовать для получения энергии. Мышечные клетки могут потреблять энергию для построения длинных мышечных белков из небольших молекул аминокислот. Молекулы могут быть изменены и транспортироваться по клетке или могут быть распределены по всему организму. Так же, как энергия требуется как для строительства, так и для сноса здания, энергия требуется как для синтеза, так и для разрушения молекул.
Многие клеточные процессы требуют постоянного снабжения энергией, обеспечиваемой клеточным метаболизмом. Сигнальные молекулы, такие как гормоны и нейротрансмиттеры, должны быть синтезированы и затем транспортированы между клетками. Патогенные бактерии и вирусы попадают в организм и разрушаются клетками. Клетки также должны экспортировать отходы и токсины, чтобы оставаться здоровыми, и многие клетки должны плавать или перемещать окружающие материалы посредством биения клеточных придатков, таких как реснички и жгутики.
Рисунок \ (\ PageIndex {1} \): Еда дает энергию для таких действий, как полет. : Колибри нужна энергия для поддержания продолжительных периодов полета.Колибри получает энергию от приема пищи и преобразования питательных веществ в энергию посредством ряда биохимических реакций. Летные мышцы птиц чрезвычайно эффективны в производстве энергии.Физиология, метаболизм — StatPearls — Книжная полка NCBI
Введение
Метаболизм — это вся сумма реакций, которые происходят в организме в каждой клетке и обеспечивают организм энергией. Эта энергия используется для жизненно важных процессов и синтеза нового органического материала.Каждый живой организм использует окружающую среду для выживания, принимая питательные вещества и вещества, которые действуют как строительные блоки для движения, роста, развития и воспроизводства. Все они опосредуются ферментами, которые представляют собой белки со специальными функциями при анаболизме и катаболизме. Скорость производства энергии называется базовой скоростью метаболизма и зависит от таких факторов, как пол, раса, физические упражнения, диета, возраст и такие заболевания, как сепсис или рак.
Проблемы, вызывающие озабоченность
Химические реакции, посредством которых происходит метаболизм, почти одинаковы для всех живых организмов, включая животных, растения, бактерии и грибы.Все эти химические реакции опосредуются белками, которые действуют как катализаторы в определенных условиях окружающей среды, таких как pH и температура. Синтез многих катализаторов, которые опосредуют химические реакции в нашем организме, берет свое начало в ДНК. Дезоксирибонуклеиновая кислота — это молекула, находящаяся в ядре, состоящая из четырех оснований, называемых аденином, гуанином, цитозином и тимином. РНК — это молекула, используемая некоторыми живыми организмами вместо ДНК, и компоненты этой молекулы включают рибозу и урацил вместо тимина.Окружающая среда, в основном растения, используют солнечный свет для преобразования воды и углекислого газа для синтеза углеводов. Живые организмы поступают наоборот, потребляя углеводы и другие органические материалы для производства энергии.
Термодинамика
Невозможно обсуждать метаболизм, не глядя на законы термодинамики. Особого внимания заслуживают, в частности, первые два закона. Первые два закона термодинамики гласят, что энергия не может быть ни создана, ни разрушена, и что результатом физических и химических изменений является увеличение энтропии во Вселенной.Фактически полезная энергия или свободная энергия — это энергия, способная работать без разницы температур. Менее полезные формы энергии высвобождаются в виде тепла. [1]
Cellular
Химический носитель энергии называется АТФ. Синтез АТФ происходит внутри внутриклеточной органеллы, ограниченной внешней и внутренней мембранами. Диссоциация воды на молекулу водорода и гидроксильную группу, которая происходит во внутренней среде тела, необходима для синтеза АТФ.Катаболические реакции, которые будут обсуждаться в этой статье позже, высвобождают значительное количество протонов, большая часть которых транспортируется в митохондрии для производства АТФ. Эти протоны транспортируются через ряд комплексов во внутренней мембране митохондрий, чтобы активировать АТФазу, используя энергию, выделяемую механизмом переноса электронной цепи.
Организмы обрабатывают пищу, которую они едят, в три этапа. На первом этапе сложные молекулы превращаются в простые; это включает расщепление сложных белков на олигопептиды и свободные аминокислоты для облегчения абсорбции, расщепление сложных сахаров на дисахариды или моносахариды и расщепление липидов до глицерина и свободных жирных кислот.Эти процессы называются пищеварением и производят только около 0,1% энергии, которая не может быть использована клеткой. На втором этапе все эти маленькие молекулы подвергаются неполному окислению. Окисление означает удаление электронов или атомов водорода. Конечным продуктом этих процессов являются вода и углекислый газ, а также три основных вещества, а именно: ацетилкофермент А, оксалоацетат и альфа-оксоглутарат. Из них наиболее распространенным соединением является ацетилкофермент А, который составляет 2/3 углерода в углеводах и глицерине, весь углерод в жирных кислотах и половину углерода в аминокислотах.Третья и последняя фаза этого процесса происходит в цикле, называемом циклом Кребса, открытом сэром Гансом Кребсом. В этом цикле ацетилкофермент А и оксалоацетат объединяются и образуют цитрат. В этой ступенчатой реакции происходит высвобождение протонов, которые передаются в дыхательную цепь для синтеза АТФ.
Дисбаланс между анаболизмом и катаболизмом может привести к ожирению и кахексии соответственно. Метаболическая энергия переносится высокоэнергетическими фосфатными группами, такими как АТФ, ГТФ и креатинфосфат; или электронными переносчиками, такими как НАДН, ФАДН и НАДФН.[2] [3]
Участвующие системы органов
Поджелудочная железа является ключевым метаболическим органом, который регулирует количество углеводов в крови, либо путем высвобождения значительного количества инсулина для снижения уровня глюкозы в крови, либо высвобождения глюкагона для их повышения. . Утилизация углеводов и липидов организмом называется циклом Рэндла и регулируется инсулином.
Печень — это орган, отвечающий за переработку абсорбированных аминокислот и липидов из тонкого кишечника.Он также регулирует цикл мочевины и основные метаболические процессы, такие как глюконеогенез и отложение гликогена. [4]
Функция
Углеводы обладают растворимостью, относительно легко транспортируются, нетоксичными молекулами, которые служат субстратом энергии при снижении уровня кислорода.
Самыми энергоемкими молекулами являются липиды, и они являются основной энергетической молекулой для млекопитающих и тканей. Поскольку они нерастворимы, они не переносятся кровью, не могут использоваться в анаэробных условиях и требуют большего количества кислорода для извлечения из них энергии (2.8 АТФ / молекула кислорода). Они не могут преодолевать гематоэнцефалический барьер, а эритроциты или почечные клетки не могут их использовать. Аминокислоты действуют как субстраты для производства глюкозы только в состоянии длительного голодания, демонстрируя истощение запасов гликогена.
Метаболизм этих трех основных субстратов сводится к одной молекуле, ацетил-КоА, в митохондриях. Метаболизм этой промежуточной молекулы генерирует 3 НАДН, 1 ФАДН, 1 ГТФ и 2 СО2, все из которых участвуют в дыхательной цепи митохондрий для синтеза АТФ.[5]
Механизм
Углеводный метаболизм
Он фокусируется на одном конкретном виде сахара — глюкозе. После того, как клетка поглощает молекулу глюкозы, она немедленно метаболизируется до глюкозо-6-фосфата, который не может покинуть клетку. Катализирующий фермент в этой реакции называется гексокиназой (в печени и поджелудочной железе) или глюкокиназой в любой другой ткани. Этот метаболит используется почти во всех метаболических процессах, включая гликолиз и гликогенез. Углеводы хранятся в виде гранул гликогена для быстрой мобилизации глюкозы при необходимости.
Гликоген — это полимер глюкозы, собранный гликогенсинтазой, с точками ветвления через каждые десять молекул глюкозы, что придает гликогену древовидную структуру, которая полезна для мобилизации глюкозы. Некоторые ткани используют гликоген для собственного поддержания, например, скелетные мышцы; некоторые другие ткани используют гликоген для поддержания стабильного уровня глюкозы в сыворотке, например, печень. В печени может храниться почти 100 г гликогена, который поставляет глюкозу в течение 24 часов; скелетные мышцы накапливают 350 г, которых достаточно на 60 минут мышечного сокращения.Глюкоза метаболизируется путем гликолиза во всех клетках с образованием пирувата. В этом процессе не используется кислород, а образуются две молекулы пирувата, 2 НАДН и 2 АТФ.
Пируват может иметь три судьбы внутри клетки: он может транспортироваться в митохондрии и генерировать ацетил-КоА, он может оставаться в цитозоле и генерировать лактат, или он может использоваться в гликонеогенезе ферментом аланинаминотрансферазой (ALT). Судьба пирувата в тканях будет зависеть от гормональной регуляции, доступности кислорода и конкретной ткани.Например, в печени избыток пирувата метаболизируется до ацетил-КоА, который затем используется для синтеза липидов, тогда как в мышцах он подвергается полному окислению до СО2.
Глюкозо-6-фосфат также может использоваться пентозофосфатным путем. Этот путь синтезирует нуклеотиды, синтез определенных липидов и поддерживает глутатион в его активной форме. Этот процесс регулируется глюкозо-6-фосфатдегидрогеназой.
Углеводный обмен регулируется в основном инсулином, так как он стимулирует гликолиз и гликогенез.Катехоламины, глюкагон, кортизол и гормон роста стимулируют глюконеогенез и гликогенолиз. [6]
Липидный обмен
Жирные кислоты служат для производства энергии в окислительных тканях. Некоторые из них являются амфипатическими и потенциально токсичными, и они транспортируются связанными с альбумином. Кишечник поглощает жирные кислоты в виде мицелл; они поглощаются энтероцитами в стенке кишечника. Попадая внутрь, эти молекулы жира распадаются на более мелкие молекулы, свободные жирные кислоты и глицерин, которые конъюгированы сзади с образованием триглицеридов.Они связаны с белками и образуют хиломикроны вне энтероцита.
Эти хиломикроны очень богаты холестерином и триглицеридами, которые транспортируются по системе воротной вены в печень. Печень будет обрабатывать эти сложные молекулы для извлечения части холестерина и триглицеридов. Печень секретирует новую форму сложной молекулы, называемой ЛПОНП, которая транспортирует эндогенные липиды и жир к периферическим тканям, которые экспрессируют гормоночувствительную липазу и липопротеинлипазу.
Этот фермент восстанавливает ЛПОНП до ЛПНП, который содержит больше холестерина, чем другие молекулы, и, наконец, он поглощается тканями-мишенями. Все это называется «прямым метаболизмом холестерина». Когда в периферических тканях содержится слишком много жира или холестерина, он перемещается в липопротеине, называемом ЛПВП, который поступает в желчную систему для экскреции. Этот процесс называется «обратным метаболизмом холестерина». Оба регулируются инсулином, который стимулирует липазы в организме, но подавляет липолиз.[7] [8] [9] [10]
Аминокислотный метаболизм
Мы потребляем почти 100 г белка в день. В организме содержится около 10 кг белка, который метаболизируется 300 г в день. Структурными единицами, составляющими белки, являются аминокислоты. Некоторые из них являются незаменимыми (это означает, что организм не может их синтезировать и должен получать их с пищей), а некоторые — заменимые аминокислоты (которые организм может синтезировать). Белки абсорбируются энтероцитами в виде аминокислот.Аминокислоты содержат группу азота и двухуглеродный скелет, называемый 2-оксокислотой.
При метаболизме аминокислот образуется аммоний, который является токсичной молекулой, особенно для ЦНС. Аммоний может метаболизироваться в печени для выведения в цикл орнитина (мочевины). Аминокислотный метаболизм происходит в двух видах химических реакций. Первый называется трансаминированием, в котором участвуют аланинаминотрансфераза (АЛТ) и аспартатаминотрансфераза (АСТ). Эти две реакции требуют трехуглеродного скелета для замены аминогруппы; скелет этих двух ферментов — альфа-кетоглутарат.В реакции, регулируемой ALT, аланин передает аминогруппу альфа-кетоглутарату с образованием пирувата и глутамата. В реакции, регулируемой AST, происходит обратная ситуация. Аминогруппа, пожертвованная глутаматом, используется для создания аспартата и передачи второго атома аминогруппы циклу мочевины. Вторая реакция — дезаминирование, при котором глутаматдегидрогеназа метаболизирует глутамат с образованием альфа-кетоглутарата и аммиака, который должен быть детоксифицирован циклом мочевины.
После дезаминирования скелет подвергается промежуточному метаболизму.Метаболизм аминокислот может давать семь типов скелетов, а именно: альфа-кетоглутарат, оксалоацетат, сукцинил-КоА, фумарат, пируват, ацетил-КоА и ацетоацетил-КоА. Первые пять содержат три или более атомов углерода, и они полезны для гликонеогенеза, последние два имеют только два атома углерода и непригодны для гликонеогенеза. Вместо этого они используются для синтеза липидов.
Как и все другие метаболические пути, инсулин является основным регулятором. Напротив, регулятор метаболизма аминокислот — кортизол и гормон щитовидной железы, который опосредует разрушение мышц.[11] [12] [13]
Клиническая значимость
Сахарный диабет
Поджелудочная железа определяет концентрацию глюкозы в крови и некоторых аминокислот, таких как аргинин и лейцин. Высокий уровень этих веществ указывает на насыщение питательными веществами, и это сообщение отправляется организму поджелудочной железой в виде инсулина. Инсулин — это уникальный метаболический гормон, отвечающий за распределение питательных веществ в организме, а это означает, что дефицит инсулина подразумевает плейотропные изменения в метаболизме человека.При дефиците инсулина наблюдается меньшее подавление катаболических реакций; это приводит к чистой мобилизации субстратов из тканей. Поджелудочная железа определяет статус метаболитов, периферические ткани определяют концентрацию инсулина. Когда периферические ткани чувствуют падение инсулина, они становятся катаболическими, и субстраты начинают мобилизоваться. Печень реагирует на низкий уровень инсулина увеличением синтеза глюкозы за счет глюконеогенеза и гликогенолиза. Как видно из метаболизма аминокислот, основным глюконеогенным субстратом является аланин, образующийся в результате мышечных отходов и протеолиза.Жировая ткань также реагирует, усиливая липолиз, что приводит к накоплению жирных кислот и глицерина. Повышенная доставка неэтерифицированных жирных кислот (NEFA) в печень увеличивает кетогенез. [14]
Сепсис, травмы и ожоги
Катаболизм также может инициироваться чрезмерной воспалительной реакцией, характеризующейся усилением и экспрессией провоспалительных цитокинов, таких как TNF-alfa, IL-6 и IL-1. Этот процесс называется синдромом системной воспалительной реакции (ССВО).Он имеет три фазы относительно метаболизма; фаза прилива или отлива, катаболическая фаза и анаболическая фаза. В этих сценариях происходит значительная мобилизация субстрата по всему телу. [15]
Дефицит G6PDH
Это дефицит, широко распространенный в экваториальных регионах. Он связан с Х-хромосомой и снижает уровень НАДФН, следовательно, снижает уровень активной формы глутатиона и увеличивает окислительный стресс для красных кровяных телец; это приводит к гемолизу, который в зависимости от повреждения представляет собой криз.На мазке периферической крови он выглядит как тельца Хайнца и волдыри. [16]
Ссылки
- 1.
- Лю X, Чен Т., Джайн П.К., Сюй В. Выявление термодинамических свойств элементарных химических реакций на уровне одной молекулы. J Phys Chem B. 25 июля 2019 г .; 123 (29): 6253-6259. [PubMed: 31246466]
- 2.
- Рамнанан С.Дж., Эдгертон Д.С., Крафт Дж., Черрингтон А.Д. Физиологическое действие глюкагона на метаболизм глюкозы в печени. Диабет ожирения Metab. 2011 Октябрь; 13 Дополнение 1: 118-25.[Бесплатная статья PMC: PMC5371022] [PubMed: 21824265]
- 3.
- Сабо И., Зоратти М. Митохондриальные каналы: потоки ионов и многое другое. Physiol Rev.2014, апрель; 94 (2): 519-608. [PubMed: 24692355]
- 4.
- Хюэ Л., Тэгтмайер Х. Снова о цикле Рэндла: новая голова вместо старой шляпы. Am J Physiol Endocrinol Metab. 2009 сентябрь; 297 (3): E578-91. [Бесплатная статья PMC: PMC2739696] [PubMed: 19531645]
- 5.
- KREBS HA. Цикл трикарбоновых кислот. 1948-1949 Харви Лект.Series 44: 165-99. [PubMed: 14849928]
- 6.
- Дашти М. Краткий обзор биохимии: углеводный обмен. Clin Biochem. 2013 Октябрь; 46 (15): 1339-52. [PubMed: 23680095]
- 7.
- Abumrad NA, Davidson NO. Роль кишечника в гомеостазе липидов. Physiol Rev.2012 июль; 92 (3): 1061-85. [Бесплатная статья PMC: PMC3589762] [PubMed: 22811425]
- 8.
- Goldstein JL, Brown MS. Рецептор ЛПНП. Артериосклер Thromb Vasc Biol. 2009 Апрель; 29 (4): 431-8. [Бесплатная статья PMC: PMC2740366] [PubMed: 19299327]
- 9.
- Jaworski K, Sarkadi-Nagy E, Duncan RE, Ahmadian M, Sul HS. Регулирование метаболизма триглицеридов. IV. Гормональная регуляция липолиза в жировой ткани. Am J Physiol Gastrointest Liver Physiol. 2007 июл; 293 (1): G1-4. [Бесплатная статья PMC: PMC2887286] [PubMed: 17218471]
- 10.
- Пирс В., Кароббио С., Видаль-Пуч А. Различные оттенки жира. Природа. 2014 5 июня; 510 (7503): 76-83. [PubMed: 24899307]
- 11.
- Deutz NE, Wolfe RR. Есть ли максимальный анаболический ответ на потребление белка во время еды? Clin Nutr.2013 Апрель; 32 (2): 309-13. [Бесплатная статья PMC: PMC3595342] [PubMed: 23260197]
- 12.
- Finn PF, Dice JF. Протеолитические и липолитические реакции на голодание. Питание. 2006 июль-август; 22 (7-8): 830-44. [PubMed: 16815497]
- 13.
- Ванденберг Р.Дж., Райан Р.М. Механизмы транспорта глутамата. Physiol Rev.2013 Октябрь; 93 (4): 1621-57. [PubMed: 24137018]
- 14.
- Заккарди Ф., Уэбб Д.Р., Йейтс Т., Дэвис М.Дж. Патофизиология сахарного диабета 1 и 2 типа: 90-летняя перспектива.Postgrad Med J. 2016 февраль; 92 (1084): 63-9. [PubMed: 26621825]
- 15.
- Чеккони М., Эванс Л., Леви М., Родс А. Сепсис и септический шок. Ланцет. 7 июля 2018 г .; 392 (10141): 75-87. [PubMed: 29937192]
- 16.
- Штайнер М., Людеманн Дж., Краммер-Штайнер Б. Фавизм и дефицит глюкозо-6-фосфатдегидрогеназы. N Engl J Med. 2018 15 марта; 378 (11): 1068. [PubMed: 29542311]
Определение и примеры метаболизма — Биологический онлайн-словарь
Метаболизм
n., множественное число: метаболизм
[mɪˈtæbəˌlɪzəm]
Определение: катаболические и анаболические процессы
Определение метаболизма
существительное
Процесс, включающий набор химических реакций, которые преобразуют молекулу в другую для поддержания жизненного состояния клетки или организм
Дополнительная информация о метаболизме
Метаболизм относится ко всем химическим реакциям, участвующим в превращении одной молекулы в другую. Основные функции метаболизма — хранение (т.е. преобразование определенных молекул в качестве источника энергии для различных клеточных процессов), для преобразования определенных молекул в качестве компонентов биомолекул (например, углеводов, белков, липидов и нуклеиновых кислот), а также для удаления побочных продуктов, таких как азотистые отходы.
Метаболизм включает процессы роста, воспроизводства, реакции на окружающую среду, механизмы выживания, поддержание и поддержание структуры и целостности клеток. В этих химических реакциях используются различные ферменты. Метаболизм можно разделить на две категории: катаболизм и анаболизм. Катаболизм включает серию деструктивных химических реакций, которые расщепляют сложные молекулы на более мелкие единицы, обычно высвобождая при этом энергию. Анаболизм включает последовательность химических реакций, которые создают или синтезируют молекулы из более мелких единиц, обычно требуя ввода энергии (АТФ) в процессе.
Расстройство или дисфункция обмена веществ называется нарушением обмена веществ.
Происхождение слова: Греческое метаболе («изменить»), от метабаллейн («изменить»), мета — + баллен («бросить»)
См. Также:
Связанные термины:
Дополнительная литература:
© BiologyOnline.com. Контент предоставлен и модерируется редакторами Biology Online.
Следующий4.1 Энергия и метаболизм — Концепции биологии — 1-е канадское издание
Цели обучения
К концу этого раздела вы сможете:
- Объясните, что такое метаболические пути
- Изложите первый и второй законы термодинамики
- Объясните разницу между кинетической и потенциальной энергией
- Описать эндергонические и экзэргонические реакции
- Обсудите, как ферменты действуют как молекулярные катализаторы
Посмотрите видео о гетеротрофах.
Ученые используют термин биоэнергетика для описания концепции потока энергии (рис. 4.2) через живые системы, такие как клетки. Клеточные процессы , такие как построение и разрушение сложных молекул , происходят посредством ступенчатых химических реакций . Некоторые из этих химических реакций являются спонтанными и высвобождают энергию, тогда как другие требуют энергии для протекания. Точно так же, как живые существа должны постоянно потреблять пищу для пополнения своих запасов энергии, клетки должны постоянно производить больше энергии, чтобы восполнить то, что используется многими химическими реакциями, требующими энергии, которые постоянно происходят.В совокупности все химические реакции , которые происходят внутри клеток, включая те, которые потребляют или генерируют энергию, называются метаболизмом клетки .
Рис. 4.2. В конечном счете, большинство форм жизни получают энергию от солнца. Растения используют фотосинтез для захвата солнечного света, а травоядные животные поедают растения для получения энергии. Плотоядные животные едят травоядных, и возможное разложение растительного и животного материала способствует пополнению запасов питательных веществ.Рассмотрим метаболизм сахара.Это классический пример одного из многих клеточных процессов, которые используют и производят энергию. Живые существа потребляют сахар в качестве основного источника энергии, потому что молекулы сахара имеют много энергии, хранящейся в их связях. По большей части фотосинтезирующие организмы, такие как растения, производят эти сахара. Во время фотосинтеза растения используют энергию (первоначально солнечного света) для преобразования газообразного диоксида углерода (CO 2 ) в молекулы сахара (например, глюкозы: C 6 H 12 O 6 ).Они потребляют углекислый газ и выделяют кислород в качестве побочного продукта. Эта реакция кратко описана следующим образом:
6CO 2 + 6H 2 O + энергия ——-> C 6 H 12 O 6 + 6O 2
Поскольку этот процесс включает синтез молекулы, накапливающей энергию, для его выполнения требуется подача энергии. Во время световых реакций фотосинтеза энергия обеспечивается молекулой, называемой аденозинтрифосфатом (АТФ) , которая является основной энергетической валютой всех клеток.Так же, как доллар используется в качестве валюты для покупки товаров, клетки используют молекулы АТФ в качестве энергетической валюты для выполнения немедленной работы. Напротив, молекулы-накопители энергии, такие как глюкоза, потребляются только для того, чтобы расщепиться для использования своей энергии. Реакцию, которая собирает энергию молекулы сахара в клетках, нуждающихся в кислороде для выживания, можно описать обратной реакцией на фотосинтез. В этой реакции расходуется кислород и выделяется углекислый газ в качестве побочного продукта. Реакция резюмируется как:
C 6 H 12 O 6 + 6O 2 ——> 6CO 2 + 6H 2 O + энергия
Обе эти реакции включают много этапов.
Процессы производства и расщепления молекул сахара иллюстрируют два примера метаболических путей. Метаболический путь — это серия химических реакций, в которых исходная молекула изменяется, шаг за шагом, через ряд промежуточных продуктов метаболизма, в конечном итоге давая конечный продукт. В примере метаболизма сахара первый путь метаболизма синтезирует сахар из более мелких молекул, а другой путь расщепляет сахар на более мелкие молекулы. Эти два противоположных процесса — первый, требующий энергии, а второй — производящий энергию — называются анаболическими путями (строительные полимеры) и катаболическими путями (разрушение полимеров на их мономеры) соответственно.Следовательно, метаболизм состоит из синтеза (анаболизма) и деградации (катаболизма) (рис. 4.3).
Важно знать, что химические реакции метаболических путей не происходят сами по себе. Каждая стадия реакции ускоряется или катализируется белком, называемым ферментом. Ферменты важны для катализирования всех типов биологических реакций — как тех, которые требуют энергии, так и тех, которые выделяют энергию.
Рис. 4.3. Катаболические пути — это те пути, которые генерируют энергию, расщепляя более крупные молекулы.Анаболические пути — это те, которые требуют энергии для синтеза более крупных молекул. Оба типа путей необходимы для поддержания энергетического баланса клетки.Термодинамика относится к изучению энергии и передачи энергии с участием физической материи. Материя, относящаяся к конкретному случаю передачи энергии, называется системой, а все, что находится вне этой материи, называется окружающей средой. Например, при нагревании кастрюли с водой на плите система включает плиту, кастрюлю и воду.Энергия передается внутри системы (между плитой, кастрюлей и водой). Есть два типа систем: открытая и закрытая. В открытой системе можно обмениваться энергией с окружающей средой. Плита открыта, потому что тепло может отдаваться воздуху. Закрытая система не может обмениваться энергией с окружающей средой.
Биологические организмы — открытые системы. Между ними и их окружением происходит обмен энергией, поскольку они используют энергию солнца для фотосинтеза или потребляют молекулы, накапливающие энергию, и выделяют энергию в окружающую среду, выполняя работу и выделяя тепло.Как и все в физическом мире, энергия подчиняется физическим законам. Законы термодинамики управляют передачей энергии внутри и между всеми системами во Вселенной.
В общем, энергия определяется как способность выполнять работу или создавать какие-либо изменения. Энергия существует в разных формах. Например, электрическая энергия, световая энергия и тепловая энергия — это разные виды энергии. Чтобы понять, как энергия поступает в биологические системы и выходит из них, важно понимать два физических закона, управляющих энергией.
Первый закон термодинамики гласит, что общее количество энергии во Вселенной постоянно и сохраняется. Другими словами, во Вселенной всегда было и будет точно такое же количество энергии. Энергия существует во многих различных формах . Согласно первому закону термодинамики, энергия может передаваться с места на место или преобразовываться в различные формы, , но не может быть создана или уничтожена . Передачи и преобразования энергии происходят вокруг нас постоянно.Лампочки преобразуют электрическую энергию в световую и тепловую. Газовые плиты преобразуют химическую энергию природного газа в тепловую. Растения осуществляют одно из наиболее биологически полезных преобразований энергии на Земле: преобразование энергии солнечного света в химическую энергию, хранящуюся в органических молекулах (рис. 4.2). Некоторые примеры преобразования энергии показаны на рисунке 4.4.
Задача для всех живых организмов состоит в том, чтобы получать энергию из окружающей среды в формах, которые они могут передавать или преобразовывать в полезную энергию для выполнения работы.Живые клетки эволюционировали, чтобы справиться с этой задачей. Химическая энергия, хранящаяся в органических молекулах, таких как сахара и жиры, передается и преобразуется посредством ряда клеточных химических реакций в энергию в молекулах АТФ. Энергия в молекулах АТФ легко доступна для работы. Примеры типов работы, которую должны выполнять клетки, включают построение сложных молекул, транспортировку материалов, обеспечение движения ресничек или жгутиков и сокращение мышечных волокон для создания движения.
Рисунок 4.4 Показаны некоторые примеры передачи и преобразования энергии из одной системы в другую и из одной формы в другую. Пища, которую мы потребляем, обеспечивает наши клетки энергией, необходимой для выполнения функций организма, так же как световая энергия дает растениям средства для создания необходимой им химической энергии. (кредит «мороженое»: модификация работы Д. Шэрон Прюитт; кредит «дети»: модификация работы Макса из Провиденса; кредитный «лист»: модификация работы Кори Занкера)Основные задачи получения живой клетки, преобразование и использование энергии для работы может показаться простым.Однако второй закон термодинамики объясняет, почему эти задачи сложнее, чем кажется. Все передачи и преобразования энергии никогда не бывают полностью эффективными. . При каждой передаче энергии некоторое количество энергии теряется в непригодной для использования форме. В большинстве случаев это форма тепловой энергии. Термодинамически тепловая энергия определяется как неработающая энергия, передаваемая от одной системы к другой. Например, когда включается электрическая лампочка, часть энергии, преобразуемой из электрической энергии в энергию света, теряется в виде тепловой энергии.Точно так же часть энергии теряется в виде тепловой энергии во время клеточных метаболических реакций.
Важным понятием в физических системах является понятие порядка и беспорядка. Чем больше энергии теряется системой в свое окружение, тем менее упорядоченной и случайной является система. Ученые называют меру случайности или беспорядка в системе энтропией . Высокая энтропия означает высокий беспорядок и низкую энергию. Молекулы и химические реакции также имеют разную энтропию. Например, энтропия увеличивается, когда молекулы с высокой концентрацией в одном месте диффундируют и разлетаются.Второй закон термодинамики гласит, что энергия всегда будет теряться в виде тепла при передаче или преобразовании энергии.
Живые существа очень упорядочены, и для поддержания низкого уровня энтропии требуется постоянный подвод энергии.
Когда объект находится в движении, с этим объектом связана энергия. Подумайте о шаре для разрушения. Даже медленно движущийся шар-разрушитель может нанести большой урон другим объектам. Энергия, связанная с движущимися объектами, называется кинетической энергией (Рисунок 4.5). Ускоряющаяся пуля, идущий человек и быстрое движение молекул в воздухе (выделяющих тепло) — все они обладают кинетической энергией.
А что, если тот же самый неподвижный шар для разрушения поднять с помощью крана на два этажа над землей? Если подвешенный шар для разрушения неподвижен, связана ли с ним энергия? Ответ положительный. Энергия, которая требовалась для подъема разрушающего шара, не исчезла, а теперь сохраняется в разрушающем шаре в силу его положения и силы тяжести, действующей на него.Этот вид энергии называется потенциальной энергией (рис. 4.5). Если мяч упадет, потенциальная энергия будет преобразована в кинетическую энергию до тех пор, пока вся потенциальная энергия не будет исчерпана, когда мяч упадет на землю. Шары-крушители тоже качаются, как маятник; во время качания происходит постоянное изменение потенциальной энергии (самая высокая в верхней части качания) на кинетическую энергию (самая высокая в нижней части качания). Другие примеры потенциальной энергии включают энергию воды, удерживаемой за плотиной, или человека, который собирается прыгнуть с парашютом из самолета.
Рисунок 4.5 У негазированной воды есть потенциальная энергия; движущаяся вода, например, в водопаде или в быстро текущей реке, обладает кинетической энергией. (кредит «дамба»: модификация работы «Паскаля» / Flickr; кредит «водопад»: модификация работы Фрэнка Гуальтьери)Потенциальная энергия связана не только с расположением материи, но и со структурой материи. Даже пружина на земле имеет потенциальную энергию, если она сжата; то же самое делает и туго натянутая резинка. На молекулярном уровне связи, которые удерживают атомы молекул вместе, существуют в определенной структуре, обладающей потенциальной энергией.Помните, что анаболические клеточные пути требуют энергии для синтеза сложных молекул из более простых, а катаболические пути высвобождают энергию при расщеплении сложных молекул. Тот факт, что энергия может выделяться при разрыве определенных химических связей, означает, что эти связи обладают потенциальной энергией. Фактически, в связях всех пищевых молекул, которые мы едим, хранится потенциальная энергия, которая в конечном итоге используется для использования. Это потому, что эти связи могут высвобождать энергию при разрыве.Тип потенциальной энергии, которая существует в химических связях и высвобождается при разрыве этих связей, называется химической энергией. Химическая энергия отвечает за обеспечение живых клеток энергией из пищи. Высвобождение энергии происходит при разрыве молекулярных связей в молекулах пищи.
Посмотрите видео о килокалориях.
Концепция в действии
Посетите сайт и выберите «Маятник» в меню «Работа и энергия», чтобы увидеть изменение кинетической и потенциальной энергии маятника в движении.
После того, как мы узнали, что химические реакции высвобождают энергию при разрыве энергосохраняющих связей, возникает следующий важный вопрос: как количественно и выражается энергия, связанная с этими химическими реакциями? Как можно сравнить энергию, выделяемую в результате одной реакции, с энергией другой реакции? Измерение свободной энергии используется для количественной оценки этой передачи энергии. Напомним, что согласно второму закону термодинамики, любая передача энергии связана с потерей некоторого количества энергии в непригодной для использования форме, такой как тепло.Свободная энергия, в частности, относится к энергии, связанной с химической реакцией, которая доступна после учета потерь. Другими словами, свободная энергия — это полезная энергия или энергия, доступная для выполнения работы.
Если во время химической реакции выделяется энергия, то изменение свободной энергии, обозначенное как ∆G (дельта G), будет отрицательным числом. Отрицательное изменение свободной энергии также означает, что продукты реакции имеют меньше свободной энергии, чем реагенты, потому что они выделяют некоторую свободную энергию во время реакции.Реакции, которые имеют отрицательное изменение свободной энергии и, следовательно, высвобождают свободную энергию, называются экзергоническими реакциями. Подумайте: ex эргономичный означает, что энергия ex в системе. Эти реакции также называются спонтанными реакциями, и их продукты имеют меньше накопленной энергии, чем реагенты. Необходимо провести важное различие между термином «спонтанный» и идеей немедленного протекания химической реакции. В отличие от повседневного использования этого термина, спонтанная реакция — это не реакция, которая возникает внезапно или быстро.Ржавчина железа — это пример спонтанной реакции, которая происходит медленно, мало-помалу, с течением времени.
Если химическая реакция поглощает энергию, а не высвобождает энергию в балансе, то ∆G для этой реакции будет положительным значением. В этом случае у продуктов больше свободной энергии, чем у реагентов. Таким образом, продукты этих реакций можно рассматривать как молекулы, запасающие энергию. Эти химические реакции называются эндергоническими реакциями, а — несамопроизвольными .Эндергоническая реакция не будет происходить сама по себе без добавления свободной энергии.
Рисунок 4.6. Показаны некоторые примеры эндергонических процессов (требующих энергии) и экзэргонических процессов (тех, которые выделяют энергию). (кредит a: модификация работы Натали Мэйнор; кредит b: модификация работы Министерством сельского хозяйства США; кредит c: модификация работы Кори Занкера; кредит d: модификация работы Гарри Мальша)Посмотрите на каждый из представленных процессов и решите если он эндергонический или экзергонический.
Есть еще одна важная концепция, которую необходимо учитывать в отношении эндергонических и экзэргонических реакций. Экзергонические реакции требуют небольшого количества энергии для начала, прежде чем они смогут приступить к своим этапам высвобождения энергии. Эти реакции имеют чистое высвобождение энергии, но все же требуют некоторого ввода энергии вначале. Это небольшое количество энергии, необходимое для протекания всех химических реакций, называется энергией активации.
Концепция в действии
Посмотрите анимацию перехода от свободной энергии к переходному состоянию реакции.
Вещество, которое способствует протеканию химической реакции, называется катализатором, а молекулы, катализирующие биохимические реакции, называются ферментами. Большинство ферментов являются белками и выполняют критическую задачу , снижая энергии активации химических реакций внутри клетки. Большинство реакций, критических для живой клетки, протекают слишком медленно при нормальной температуре, чтобы быть полезными для клетки. Без ферментов ускорить эти реакции жизнь не могла бы существовать.Ферменты делают это, связываясь с молекулами реагентов и удерживая их таким образом, чтобы облегчить процессы разрыва и образования химических связей. Важно помнить, что ферменты не изменяют, является ли реакция экзергонической (спонтанной) или эндергонической. Это потому, что они не изменяют свободную энергию реагентов или продуктов. Они только уменьшают энергию активации, необходимую для продолжения реакции (рис. 4.7). Кроме того, сам фермент не изменяется в результате реакции, которую он катализирует.После того, как одна реакция катализируется, фермент может участвовать в других реакциях.
Рис. 4.7. Ферменты снижают энергию активации реакции, но не изменяют свободную энергию реакции.Химические реагенты, с которыми связывается фермент, называются субстратами фермента. В зависимости от конкретной химической реакции может быть один или несколько субстратов. В некоторых реакциях один реагент-субстрат распадается на несколько продуктов. В других случаях два субстрата могут объединиться, чтобы создать одну большую молекулу.Два реагента также могут вступить в реакцию, и оба они станут модифицированными, но выходят из реакции в виде двух продуктов. Место внутри фермента, где связывается субстрат, называется активным сайтом фермента . Активный сайт — это место, где происходит «действие». Поскольку ферменты являются белками, в активном центре существует уникальная комбинация боковых цепей аминокислот. Каждая боковая цепь характеризуется разными свойствами. Они могут быть большими или маленькими, слабокислотными или основными, гидрофильными или гидрофобными, положительно или отрицательно заряженными или нейтральными.Уникальная комбинация боковых цепей создает очень специфическую химическую среду в активном центре. Эта специфическая среда подходит для связывания с одним конкретным химическим субстратом (или субстратами).
Активные сайты подвержены влиянию местной среды. Повышение температуры окружающей среды обычно увеличивает скорость реакции, катализируемой ферментами или иначе. Однако температуры за пределами оптимального диапазона снижают скорость, с которой фермент катализирует реакцию. Высокие температуры в конечном итоге вызывают денатурирование ферментов, необратимое изменение трехмерной формы и, следовательно, функции фермента.Ферменты также подходят для наилучшего функционирования в определенном диапазоне pH и концентрации соли, и, как и в случае с температурой, экстремальные значения pH и концентрации соли могут вызывать денатурирование ферментов.
В течение многих лет ученые считали, что связывание фермента с субстратом происходит простым «замком и ключом». Эта модель утверждает, что фермент и субстрат идеально сочетаются друг с другом за один мгновенный шаг. Однако текущие исследования поддерживают модель, называемую индуцированной подгонкой (рис. 4.8). Модель индуцированной подгонки расширяет модель блокировки и ключа, описывая более динамическое связывание между ферментом и субстратом.Когда фермент и субстрат объединяются, их взаимодействие вызывает небольшой сдвиг в структуре фермента, который формирует идеальную структуру связывания между ферментом и субстратом.
Концепция в действии
Просмотрите анимацию индуцированной посадки.
Когда фермент связывает свой субстрат, образуется комплекс фермент-субстрат. Этот комплекс снижает энергию активации реакции и способствует ее быстрому развитию одним из множества возможных способов. На базовом уровне ферменты способствуют химическим реакциям, в которых участвует более одного субстрата, объединяя субстраты вместе в оптимальной ориентации для реакции.Другой способ, которым ферменты способствуют реакции своих субстратов, — это создание оптимальной среды в активном центре для протекания реакции. Химические свойства, проистекающие из особого расположения R-групп аминокислот в активном центре, создают идеальную среду для реакции определенных субстратов фермента.
Комплекс фермент-субстрат также может снизить энергию активации за счет нарушения структуры связи, так что ее легче разорвать. Наконец, ферменты также могут снижать энергию активации, принимая участие в самой химической реакции.В этих случаях важно помнить, что фермент всегда возвращается в исходное состояние по завершении реакции. Одним из отличительных свойств ферментов является то, что они в конечном итоге остаются неизменными в результате катализируемых ими реакций. После того, как фермент катализирует реакцию, он высвобождает свой продукт (продукты) и может катализировать новую реакцию.
Рис. 4.8. Модель индуцированной подгонки представляет собой корректировку модели «замок-и-ключ» и объясняет, как ферменты и субстраты претерпевают динамические модификации во время переходного состояния, чтобы увеличить сродство субстрата к активному сайту.Казалось бы, идеальным иметь сценарий, при котором все ферменты организма существуют в изобилии и оптимально функционируют во всех клеточных условиях, во всех клетках, во все времена. Однако множество механизмов гарантирует, что этого не произойдет. Клеточные потребности и условия постоянно меняются от клетки к клетке и со временем меняются внутри отдельных клеток. Необходимые ферменты клеток желудка отличаются от ферментов жировых клеток, клеток кожи, клеток крови и нервных клеток. Кроме того, клетка пищеварительного органа намного усерднее обрабатывает и расщепляет питательные вещества в течение времени, которое следует за едой, по сравнению со многими часами после еды.Поскольку эти клеточные потребности и условия меняются, должны меняться количества и функциональность различных ферментов.
Поскольку скорость биохимических реакций контролируется энергией активации, а ферменты ниже и определяют энергию активации химических реакций, относительные количества и функционирование различных ферментов в клетке в конечном итоге определяют, какие реакции будут протекать и с какой скоростью. Это определение строго контролируется в клетках. В определенных клеточных средах активность ферментов частично контролируется факторами окружающей среды, такими как pH, температура, концентрация соли и, в некоторых случаях, кофакторами или коферментами.
Ферменты также можно регулировать способами, которые либо способствуют, либо снижают активность фермента. Есть много видов молекул, которые подавляют или стимулируют функцию ферментов, и различные механизмы, с помощью которых они это делают. В некоторых случаях ингибирования фермента молекула ингибитора достаточно похожа на субстрат, чтобы она могла связываться с активным сайтом и просто блокировать связывание субстрата. Когда это происходит, фермент ингибируется посредством конкурентного ингибирования , потому что молекула ингибитора конкурирует с субстратом за связывание с активным центром.
С другой стороны, в неконкурентном ингибировании молекула ингибитора связывается с ферментом в месте, отличном от активного сайта, называемом аллостерическим сайтом , но все же удается блокировать связывание субстрата с активным сайтом. Некоторые молекулы ингибитора связываются с ферментами в том месте, где их связывание вызывает конформационное изменение, которое снижает сродство фермента к его субстрату. Этот тип торможения называется аллостерическим торможением (рис. 4.9).Большинство аллостерически регулируемых ферментов состоят из более чем одного полипептида, что означает, что они имеют более одной белковой субъединицы. Когда аллостерический ингибитор связывается с областью фермента, все активные центры белковых субъединиц слегка изменяются, так что они связывают свои субстраты с меньшей эффективностью. Есть аллостерические активаторы, а также ингибиторы. Аллостерические активаторы связываются с участками фермента, удаленными от активного сайта, вызывая конформационные изменения, которые увеличивают сродство активного сайта (ов) фермента к его субстрату (ам) (рис.9).
Рис. 4.9. Аллостерическое ингибирование работает, косвенно вызывая конформационные изменения активного сайта, так что субстрат больше не подходит. Напротив, при аллостерической активации молекула активатора изменяет форму активного сайта, чтобы обеспечить лучшее прилегание субстрата.Взгляд коренных народов
Растения не могут убежать или спрятаться от своих хищников, и они разработали множество стратегий, чтобы отпугнуть тех, кто их съел. Подумайте о шипах, раздражителях и вторичных метаболитах: это соединения, которые напрямую не помогают растению расти, но созданы специально для того, чтобы отпугивать хищников.Вторичные метаболиты — самый распространенный способ отпугивания хищников. Некоторые примеры вторичных метаболитов — атропин, никотин, ТГК и кофеин. Люди обнаружили, что эти вторичные метаболиты являются богатым источником материалов для лекарств. Подсчитано, что 90% лекарств в современной аптеке имеют свои «корни» в этих вторичных метаболитах.
Первые люди, лечившиеся травами, открыли миру эти вторичные метаболиты. Например, коренные народы издавна использовали кору ивовых кустарников и ольхи для приготовления чая, тонизирующего средства или припарок, чтобы уменьшить воспаление.Вы узнаете больше о воспалительной реакции иммунной системы в главе 11.
Рис. 4.10. Кора тихоокеанской ивы содержит соединение салицин.И ива, и кора ольхи содержат соединение салицин. У большинства из нас в аптечке есть это соединение в виде салициловой кислоты или аспирина. Доказано, что аспирин уменьшает боль и воспаление, а попав в наши клетки, салицин превращается в салициловую кислоту.
Так как это работает? Салицин или аспирин действуют как ингибитор ферментов.В воспалительной реакции ключевыми в этом процессе являются два фермента, COX1 и COX2. Салицин или аспирин специфически модифицируют аминокислоту (серин) в активном центре этих двух родственных ферментов. Эта модификация активных центров не позволяет нормальному субстрату связываться и, таким образом, нарушается воспалительный процесс. Как вы читали в этой главе, это делает его конкурентным ингибитором ферментов.
Фармацевтический разработчик лекарств
Рис. 4.11 Задумывались ли вы, как создаются фармацевтические препараты? (кредит: Дебора Остин)Ферменты — ключевые компоненты метаболических путей.Понимание того, как работают ферменты и как их можно регулировать, — ключевые принципы, лежащие в основе разработки многих фармацевтических препаратов, представленных сегодня на рынке. Биологи, работающие в этой области, совместно с другими учеными разрабатывают лекарства (рис. 4.11).
Рассмотрим, к примеру, статины. Статины — это название одного класса лекарств, которые могут снижать уровень холестерина. Эти соединения являются ингибиторами фермента HMG-CoA редуктазы, который является ферментом, синтезирующим холестерин из липидов в организме.Ингибируя этот фермент, можно снизить уровень холестерина, синтезируемого в организме. Точно так же ацетаминофен, широко продаваемый под торговой маркой Tylenol, является ингибитором фермента циклооксигеназы. Хотя он используется для снятия лихорадки и воспаления (боли), его механизм действия до сих пор полностью не изучен.
Как обнаруживаются наркотики? Одна из самых больших проблем в открытии лекарств — это определение мишени для лекарства. Мишень лекарства — это молекула, которая буквально является мишенью лекарства.В случае статинов мишенью для лечения является HMG-CoA редуктаза. Цели лекарств определяются путем кропотливых лабораторных исследований. Одной идентификации цели недостаточно; ученым также необходимо знать, как мишень действует внутри клетки и какие реакции идут наперекосяк в случае болезни. Как только цель и путь определены, начинается фактический процесс разработки лекарств. На этом этапе химики и биологи работают вместе, чтобы разработать и синтезировать молекулы, которые могут блокировать или активировать определенную реакцию.Однако это только начало: если и когда прототип лекарства успешно выполняет свою функцию, он подвергается множеству тестов, от экспериментов in vitro до клинических испытаний, прежде чем он получит одобрение Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США. магазин.
Многие ферменты не работают оптимально или даже не работают, если они не связаны с другими специфическими небелковыми вспомогательными молекулами. Они могут связываться либо временно посредством ионных или водородных связей, либо навсегда посредством более прочных ковалентных связей.Связывание с этими молекулами способствует оптимальной форме и функционированию соответствующих ферментов. Двумя примерами этих типов вспомогательных молекул являются кофакторы и коферменты. Кофакторы — это неорганические ионы, такие как ионы железа и магния. Коферменты — это органические вспомогательные молекулы, имеющие базовую атомную структуру, состоящую из углерода и водорода. Подобно ферментам, эти молекулы участвуют в реакциях без изменения самих себя и в конечном итоге перерабатываются и используются повторно. Витамины являются источником коферментов.Некоторые витамины являются предшественниками коферментов, а другие действуют непосредственно как коферменты. Витамин С является прямым коферментом множества ферментов, которые участвуют в создании важной соединительной ткани — коллагена. Следовательно, функция фермента частично регулируется обилием различных кофакторов и коферментов, которые могут поступать с пищей организма или, в некоторых случаях, вырабатываться организмом.
Рис. 4.12. Витамины являются важными коферментами или предшественниками коферментов и необходимы для правильного функционирования ферментов.Мультивитаминные капсулы обычно содержат смеси всех витаминов в разном процентном соотношении.Подавление обратной связи в метаболических путях
Молекулы могут регулировать функцию ферментов разными способами. Однако остается главный вопрос: что это за молекулы и откуда они берутся? Как вы уже знаете, некоторые из них являются кофакторами и коферментами. Какие другие молекулы в клетке обеспечивают ферментативную регуляцию, такую как аллостерическая модуляция, а также конкурентное и неконкурентное ингибирование? Возможно, наиболее подходящими источниками регуляторных молекул для ферментативного клеточного метаболизма являются продукты самих клеточных метаболических реакций.Наиболее эффективным и элегантным образом клетки эволюционировали, чтобы использовать продукты собственных реакций для подавления активности ферментов с помощью обратной связи. Подавление обратной связи предполагает использование продукта реакции для регулирования его собственного дальнейшего производства (рис. 4.12). Клетка реагирует на обилие продуктов замедлением производства во время анаболических или катаболических реакций. Такие продукты реакции могут ингибировать ферменты, катализирующие их производство, с помощью механизмов, описанных выше.
Рисунок 4.13 Метаболические пути — это серия реакций, катализируемых множеством ферментов. Ингибирование обратной связи, когда конечный продукт пути ингибирует восходящий процесс, является важным регуляторным механизмом в клетках.Производство как аминокислот, так и нуклеотидов контролируется посредством ингибирования с обратной связью. Кроме того, АТФ является аллостерическим регулятором некоторых ферментов, участвующих в катаболическом распаде сахара, процессе, который создает АТФ. Таким образом, когда АТФ в избытке, клетка может предотвратить производство АТФ.С другой стороны, АДФ служит положительным аллостерическим регулятором (аллостерическим активатором) для некоторых из тех же ферментов, которые ингибируются АТФ. Таким образом, когда относительные уровни АДФ высоки по сравнению с АТФ, клетка начинает производить больше АТФ за счет катаболизма сахара.
Клетки выполняют жизненные функции посредством различных химических реакций. Метаболизм клетки — это комбинация химических реакций, которые происходят в ней. Катаболические реакции расщепляют сложные химические вещества на более простые и связаны с выделением энергии.Анаболические процессы создают сложные молекулы из более простых и требуют энергии.
При изучении энергии термин «система» относится к веществу и окружающей среде, участвующим в передаче энергии. Энтропия — это мера беспорядка системы. Физические законы, описывающие передачу энергии, являются законами термодинамики. Первый закон гласит, что общее количество энергии во Вселенной постоянно. Второй закон термодинамики гласит, что каждая передача энергии включает некоторую потерю энергии в непригодной для использования форме, такой как тепловая энергия.Энергия бывает разных форм: кинетической, потенциальной и свободной. Изменение свободной энергии реакции может быть отрицательным (высвобождает энергию, экзергоническое) или положительным (потребляет энергию, эндергоническое). Все реакции требуют начального ввода энергии, называемой энергией активации.
Ферменты — это химические катализаторы, которые ускоряют химические реакции за счет снижения их энергии активации. Ферменты имеют активный центр с уникальной химической средой, которая соответствует определенным химическим реагентам для этого фермента, называемым субстратами.Считается, что ферменты и субстраты связываются в соответствии с моделью индуцированной подгонки. Действие ферментов регулируется для сохранения ресурсов и оптимального реагирования на окружающую среду.
Глоссарий
энергия активации: количество начальной энергии, необходимой для протекания реакции
активный сайт: специфическая область на ферменте, где субстрат связывается
аллостерическое ингибирование: механизм ингибирования действия фермента, при котором регуляторная молекула связывается со вторым сайтом (не с активным центром) и инициирует изменение конформации в активном центре, предотвращая связывание с субстратом
анаболический: описывает путь, который требует ввода чистой энергии для синтеза сложных молекул из более простых
биоэнергетика: концепция потока энергии через живые системы
катаболический: описывает путь, по которому сложные молекулы распадаются на более простые, выделяя энергию в качестве дополнительного продукта реакции.
конкурентное ингибирование: общий механизм регуляции активности фермента, при котором молекула, отличная от субстрата фермента, способна связывать активный сайт и предотвращать связывание самого субстрата, тем самым подавляя общую скорость реакции фермента
endergonic: описывает химическую реакцию, которая приводит к продуктам, которые хранят больше химической потенциальной энергии, чем реагенты.
фермент: молекула, катализирующая биохимическую реакцию
exergonic: описывает химическую реакцию, в результате которой образуются продукты с меньшей химической потенциальной энергией, чем у реагентов, плюс высвобождение свободной энергии.
ингибирование обратной связи: механизм регулирования активности фермента, при котором продукт реакции или конечный продукт ряда последовательных реакций ингибирует фермент на более ранней стадии в серии реакций
тепловая энергия: энергия, передаваемая из одной системы в другую, которая не работает
кинетическая энергия: тип энергии, связанной с движущимися объектами
обмен веществ: все химические реакции, происходящие внутри клеток, включая те, которые используют энергию, и те, которые высвобождают энергию
неконкурентное ингибирование: общий механизм регуляции активности фермента, при котором регуляторная молекула связывается с сайтом, отличным от активного сайта, и предотвращает связывание активного сайта с субстратом; таким образом, молекула ингибитора не конкурирует с субстратом за активный центр; аллостерическое торможение — это форма неконкурентного торможения
потенциальная энергия: тип энергии, который указывает на способность совершать работу
субстрат: молекула, на которую действует фермент
термодинамика: наука о взаимосвязи тепла, энергии и работы
Происхождение и эволюция метаболических путей: почему и как первичные клетки построили метаболические пути? | Эволюция: образование и пропаганда
Увлекательно.Захватывающе. Реконструкция истории жизни на Земле представляет собой один из самых интригующих вопросов науки. И еще более интригующим является попытка понять (самые) первые молекулярные шаги, ведущие к первичным клеткам и их ранней эволюции. Существующие клетки представляют собой довольно сложные образования, состоящие из множества различных молекул, которые, однако, должны действовать и взаимодействовать согласованным образом, чтобы обеспечить выживание и воспроизводство клеток (и многоклеточных организмов).В каждый момент клеточной жизни миллиарды молекул превращаются в разные посредством реакций, которые ускоряются (катализируются) так называемыми ферментами, большинство из которых представлены белками. Несмотря на то, что эти белки могут взаимодействовать с множеством различных молекул во время своего хаотического путешествия в клетке, они связываются только с определенными молекулами, представляющими их субстрат , и трансформируют его в другую, отличную молекулу, называемую продуктом (реакции).В целом это верно не для всех ферментов; каждый фермент взаимодействует с одним субстратом, в результате чего образуется определенный продукт. Следовательно, в каждый момент жизни клетки миллиардов субстратов превращаются в миллиардов продуктов с помощью миллиардов молекул ферментов. Эти реакции чрезвычайно быстры, и мы можем представить клетку как вязкую среду, в которой эти реакции протекают упорядоченным (и только кажущимся хаотическим) образом. Все эти реакции называются метаболизмом , круговой «сущностью» в том смысле, что молекулы могут быть разрушены (катаболизм) для получения энергии и «кирпичей», необходимых для создания других различных молекул (анаболизм) (рис.1). Таким образом, ясно, что внутри клетки существует «равновесие» между катаболическими и анаболическими реакциями. Таким образом, метаболизм сохранившихся клеток довольно сложен, но мы также можем считать его чрезвычайно упорядоченным. На рисунке 2 показан пример катаболической (разложение глюкозы во время гликолиза) и анаболической (биосинтез аминокислоты гистидина) систем. Как видно из рисунка 2, и гликолиз, и биосинтез гистидина протекают по своего рода «каскаду» реакций, в которых разрушение глюкозы и образование гистидина требует последовательного действия различных ферментов, каждый из которых способен катализировать один шаг этого каскада.Набор реакций, начинающихся с субстрата и ведущих к конечному продукту реакции, называется метаболическим путем . В большинстве случаев каждый этап метаболического пути катализируется одним ферментом, который (в трети случаев) представляет собой один белок, кодируемый одним геном (Holliday et al. 2011).
Рис. 1Схематическое изображение метаболических сетей, существующих в существующих клетках (из http://manet.illinois.edu/pathways.php)
Рис.2Схематическое изображение катаболического (гликолиза) (из http://www.genome.jp/dbget-bin/www_bget?pathway+hsa00010) ( a ) и анаболического пути (биосинтез гистидина) (из http: //www.genome.jp/kegg/pathway/map/map00340.html) ( b ) в гамма-протеобактерии Escherichia coli K12
Если предположить, что существующие и очень сложные клетки произошли от гораздо более простых предковых клеток, можно также предположить, что у последних был более простой метаболизм по сравнению с существующим.Это, в свою очередь, означает, что они должны обладать гораздо более простыми геномами, вероятно, состоящими из нескольких сотен генов. Если это так, то возникает вопрос: , почему и , как первичные клетки собрались и развили свои метаболические пути? Вопрос можно перефразировать следующим образом: почему и как ранние клетки увеличили количество своих генов и сложность своих геномов? Ответ (ы), которые мы можем попытаться дать на эти вопросы, явно зависит от условий примитивной Земли и того, как выглядели первобытные живые существа.Однако это одна из самых туманных проблем; фактически, хотя были предприняты значительные усилия, чтобы понять появление первых живых существ, мы до сих пор не знаем, когда и как возникла жизнь (Peretò et al. 1998). Тем не менее, обычно считается, что первые организмы возникли и заселили водную среду (океаны, реки, пруды и т. Д.), Богатую органическими соединениями, спонтанно образовавшимися в пребиотическом мире. Это гетеротрофное происхождение жизни принято считать и часто называют теорией Опарина – Холдейна (Oparin 1924; Lazcano and Miller 1996).Если эта идея верна, жизнь произошла из изначального супа, содержащего различные органические молекулы (многие из которых используются существующими формами жизни). Этот суп из питательных веществ был доступен для ранних гетеротрофных организмов, поэтому им приходилось проводить минимум биосинтеза. Экспериментальная поддержка этого предложения была получена в 1953 году, когда Миллер (1953) и Юри показали, что аминокислоты и другие органические молекулы образуются в атмосферных условиях, которые, как считается, являются типичными для тех, что существовали на ранней Земле.Первые живые системы, вероятно, действительно произошли непосредственно от изначального супа и относительно быстро эволюционировали до общего предка, обычно называемого Последним универсальным общим предком (LUCA), сущности, представляющей отправную точку дивергенции всех существующих на Земле форм жизни. (Рис. 3). Если мы предположим, что жизнь возникла в пребиотическом супе, содержащем большую часть, если не все, необходимых малых молекул, то можно предположить большую потенциальную доступность питательных веществ на примитивной Земле, обеспечивающую как рост, так и снабжение энергией большого количества предковые организмы.Мы можем представить себе существование «раннего плавающего живого мира», состоящего из первичных клеток, которые могли бы выглядеть как «мыльные пузыри», вмещающие одну или несколько информационных молекул и выполняющих ограниченное количество метаболических реакций. Эти пузыри были способны делиться, взаимодействовать друг с другом, сливаться и делиться своими геномами и метаболическими способностями, давая начало прогрессивно сложным живым существам. Если этот сценарий верен, то есть первобытные организмы были гетеротрофными и не нуждались в развитии новых и улучшенных метаболических способностей, поскольку большинство необходимых питательных веществ было доступно, мы можем вернуться к двум вопросам, на которые можно ответить, а именно: почему и , как первичные клетки расширили свои метаболические способности и геномы?
Фиг.3Ориентировочная эволюционная шкала времени от происхождения Земли до разнообразия жизни
Ответ на первый вопрос довольно интуитивно понятен. В самом деле, увеличение числа ранних клеток, процветающих на первичном бульоне, привело бы к истощению необходимых питательных веществ, создавая все более сильное селективное давление, которое, в свою очередь, благоприятствовало (в дарвиновском смысле) тем микроорганизмам, которые стали способны синтезировать эти молекулы. концентрация которого в изначальном супе уменьшалась.Следовательно, происхождение и эволюция основных метаболических путей представляет собой решающий шаг в молекулярной и клеточной эволюции, поскольку это сделало первичные клетки менее зависимыми от экзогенных источников питательных веществ (рис. 4).
Рис. 4Схематическое изображение сообщества предковых клеток с давлением отбора, допускающим приобретение и распространение нового метаболического признака (модифицировано из Fondi et al. 2009a)
Но как происходило расширение геномов? В следующем разделе мы сосредоточимся на молекулярных механизмах, которые управляли этим переходом, т.е.е., расширение и уточнение древних метаболических путей, приводящее к структуре существующих метаболических путей.
Метаболизм | Очерки биохимии
Фенилкетонурия (ФКУ) и дефицит ацил-КоА-дегидрогеназы со средней длиной цепи (MCADD) — два наиболее часто наследуемых нарушения обмена веществ, которым страдает примерно 1 из 10000 новорожденных в Великобритании.
PKU — это аминокислотное заболевание, вызванное дефицитом фермента фенилаланингидроксилазы, вызывающим ферментативный блок.Это приводит к снижению метаболизма аминокислоты фенилаланина, вызывая повышенное накопление в крови и головном мозге. Если не лечить новорожденных, это может вызвать задержку развития или повреждение головного мозга. Лечение начинается рано с диеты с низким содержанием белка, дополненной смесью аминокислот с удаленным фенилаланином. Однако небольшая часть людей с диагнозом ФКУ не отвечает на этот предложенный вид лечения. Эти люди обычно имеют дефекты синтеза дигидроптеридинредуктазы или биоптерина, вызывающие нарушение функции фенилаланингидроксилазы.Эти люди также обычно имеют дефекты тирозингидроксилазы, что может привести к дефициту нейротрансмиттеров. Затем этим пациентам требуются дополнительные добавки с нейротрансмиттерами, а также диета с низким содержанием фенилаланина.
MCADD — это пожизненное состояние, которое возникает из-за мутации ацил-CoA-дегидрогеназы со средней длиной цепи (MCAD) при β-окислении жирных кислот. Эта мутация нарушает расщепление жирных кислот со средней длиной цепи в ацетил-КоА.Потеря или недостаточность MCAD снижает окисление жирных ацил-CoA, которые содержат более шести атомов углерода, поскольку первая стадия дегидрирования β-окисления не может происходить. Используя тандемную масс-спектрометрию, можно увидеть, что профиль жирных кислот крови в MCADD показывает накопление C6, C8 и C10: 1. MCADD является основной причиной гипокетотической гипогликемии и может вызывать дисфункцию печени с метаболическим ацидозом, гипераммониемией и внезапной смертью. MCADD особенно опасен во время голодания, когда организм использует запасы гликогена, а свободные жирные кислоты высвобождаются из жировой ткани для получения энергии.Сниженная способность метаболизировать средние жирные кислоты значительно снижает доступность субстратов для кетогенеза, синтеза АТФ и цикла TCA при низкой энергии. Накопление промежуточных продуктов жирных кислот подавляет глюконеогенез, усугубляя гипогликемию. Это накопление может также способствовать сердечно-сосудистым и неврологическим осложнениям, обнаруживаемым в этих условиях. Лечение пациентов с MCADD включает потребление напитков с высоким содержанием сахара и избегание длительных периодов голодания.
Последнее наследственное нарушение обмена веществ, которое мы обсуждаем, встречается гораздо реже и встречается у 1 из 100 000 или 1 50000 новорожденных. Болезнь мочи кленового сиропа (MSUD) возникает из-за дефицита или снижения функции комплекса дегидрогеназы α-кетокислоты с разветвленной цепью (BCKAD). Это приводит к накоплению аминокислот с разветвленной цепью (BCAA), таких как лейцин, изолейцин и валин, в крови и моче. Название болезни происходит от запаха мочи кленового сиропа из-за избытка BCAA.BCAA потребляются в рационе, богатом белком, в таких продуктах, как мясо, рыба, яйца и молоко. Обычно избыточные аминокислоты расщепляются через аминотрансферазы с разветвленной цепью (BCAT) на α-кетокислоты в митохондриях. На второй стадии катаболизма комплекс BCKAD инициирует окислительное декарбоксилирование α-кетокислот, что приводит к образованию ацетоацетата, ацетил-КоА и сукцинил-КоА. Нормальное функционирование катаболизма аминокислот необходимо для синтеза белка, передачи клеточных сигналов и метаболизма глюкозы.BCKAD состоит из четырех субъединиц. Мутации в каталитических компонентах BCKAD снижают его активность и, следовательно, увеличивают уровни BCAA, проявляясь как MSUD и вызывая дисфункцию иммунной системы, скелетных мышц и центральной нервной системы. По мере накопления токсичных метаболитов, таких как молочная кислота и аммиак, функция иммунных клеток подавляется, вызывая нарушение их регуляции. Скелетные мышцы поражены, как показали исследования, в которых обнаружено уменьшение диаметра мышечных волокон и поражения миофибрилл у крыс MSUD, однако его механизм полностью не изучен.Нарушение регуляции нервной системы, в частности, поражение головного мозга, было связано с накоплением токсичных метаболитов. Однако исследования показали, что образование азот-активных форм у пациентов с MSUD может вызывать морфологические изменения в клетках глиомы C6. Кроме того, у пациентов с MSUD обнаруживаются маркеры окислительного повреждения белков, ДНК и липидов, возможно, в результате продукции свободных радикалов.
Произошла ошибка при настройке пользовательского файла cookie
Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.