Аминокислоты bcaa для чего: Что такое BCAA, кому и для чего он нужен, как принимать

Содержание

Bcaa аминокислоты — для чего нужны, как принимать

Bcaa аминокислоты представляют собой комплекс из лейцина, изолейцина и валина. Это ключевой материал для построения мышечной массы. В мышцах содержится 35% незаменимых аминокислот, они непосредственно отвечают за процессы восстановления и анаболизма, а также оказывают антикатаболическое действие. Вещества не синтезируются в организме, человек получает их вместе со специальными добавками и пищей.

Основное отличие bcaa от 17 остальных аминокислот – метаболизм непосредственно в мышцах. Вещества являются главным “топливом” для мышечной массы, они помогают повысить спортивные показатели и улучшить общее состояние здоровья. Прием абсолютно безопасен для человека. Bcaa аминокислоты – самый распространенный и популярный тип спортивного питания.

Bcaa аминокислоты: бодибилдинг

Каждый бодибилдер получает мышечные микротравмы в ходе тренировок. Атлеты нуждаются в полноценном восстановлении мышц, суставов и связок после занятий.

Тестостерон, инсулин и другие гормоны, в сочетании с положительным азотистым балансом, обеспечивают знаменитый эффект суперкомпенсации. Его суть заключается в увеличении количества клеток и мышечного объема для выдерживания больших нагрузок.

Положительный азотистый баланс и гормоны необходимы каждому атлету. Именно незаменимые аминокислоты играют ключевую роль в синтезе данных веществ. У спортивного питания есть еще одно важное свойство – блокировка кортизола. Это гормон, вызывающий катаболические процессы в мышцах. Bcaa снижают секрецию выработки кортизола и защищают существующую мышечную ткань от разрушения при дефиците питательных веществ и в ходе тяжелых нагрузок.

Bcaa аминокислоты: прием

Выявлена оптимальная доза, подходящая 95% атлетов, она составляет 4-8 г в сутки. Данный способ приема подходит, как в период сжигания жира, так и во время активного набора мышечной массы. Не рекомендуется употреблять питание в меньших количествах, поскольку это не приведет к полному восстановлению потребностей организма. Bcaa аминокислоты стоит принимать не более 3 раз в день.

Еще несколько ключевых правил приема:

  1. Прием аминокислот по отдельности не даст нужного эффекта, вещества употребляются только вместе.
  2. Не даст нужного эффекта, также, и прием аминокислот в сочетании с другими добавками.
  3. Возможно комплексное употребление bcaa вместе с глютамином, который играет важную роль в построении мышечной массы. Из других эффектов стоит отметить повышение выносливости и улучшение секреции большинства гормонов.

В нашем каталоге представлены аминокислоты более чем 20 брендов с мировым именем. Помощь в выборе нужного питания оказывают опытные специалисты и профессиональные атлеты. Обратитесь к ним за консультацией, примите решение и сразу же сообщите нам! Позвоните сегодня!


Для чего нужны BCAA и как их принимать: польза и вред, дозировки

BCAA (Branched-chain amino acids) — аминокислоты с разветвленными боковыми цепями — это комплекс 3 незаменимых аминокислот: лейцина, валина и изолейцина. Одна из самых популярных спортивных добавок после протеина и креатина.

Зачем нужны BCAA: польза и вред

Для здорового обмена веществ организму необходимы белки (протеины). Ученые выяснили это очень давно, даже слово «протеин» происходит от древнегреческого «протос» — первый. Белки синтезируются из 22 аминокислот, однако только 13 из них организм производит самостоятельно. Остальные 9 попадают в организм с пищей. 3 из них — аминокислоты BCAA.

BCAA — природный продукт. Они содержатся в мясе, курице, рыбе, яйцах, молочных продуктах, арахисе, бобовых. BCAA составляют около 25% всех аминокислот, необходимых организму и являются основным строительным материалом для мышц. Необходимость и польза аминокислот совпадает с функцией белка в организме, ведь белок содержит все аминокислоты, включая BCAA.

BCAA: польза и вред

Польза BCAA

  • Основа для синтеза белка в организме
  • Вспомогательный компонент для синтеза других аминокислот
  • Энергия для мышц
  • Подавление чувства голода и улучшение сжигания жира
  • Улучшение обмена веществ
  • Профилактика болезненности и микроповреждений мышц на тренировках
  • В циклических видах спорта BCAA может отсрочить наступление усталости и улучшить результат у «медленных» бегунов на марафоне (медленнее 3:05)

Вред BCAA

BCAA могут нанести вред только в 2 случаях:

  • Некачественное спортивное питание
  • Передозировка

Низкое качество может привести к аллергии, отравлению и другим неприятностям, а регулярное превышение дозировки нарушит всасывание аминокислот из пищи. Если выбирать качественное спортивное питание и соблюдать дозировки, BCAA безопасны для здоровья.

Источник: trainforher.com

Нужно ли принимать BCAA

Польза будет существенной только при недостатке белка в питании. Если с питанием есть проблемы, потребность во всех аминокислотах может покрыть сывороточный протеин. И только в случае, если с питанием все плохо, а принимать протеин нет возможности, BCAA будут полезны.

BCAA иногда можно принимать как заменитель приема пищи — они притупляют чувство голода и сохраняют мышцы. Удобно использовать BCAA сразу после тренировки, особенно тем, кто любит принимать протеин с молоком, а в спортивной сумке молоко быстро киснет. BCAA будет отличной подпиткой после тренировки, пока не доберетесь до протеина.

Марафонцы, лыжники, велосипедисты, пловцы употребляют BCAA во время тренировок и соревнований длительностью более 2 часов. Как правило, для этого применяют изотоники с BCAA. На дистанции прием протеина может вызвать проблемы с пищеварением, поэтому BCAA — идеальный вариант.

BCAA необходимы только в следующих случаях:

  • До и во время нагрузки (протеин может вызвать дискомфорт)
  • Нет возможности выпить протеин сразу после тренировки
  • Нужен низкокалорийный заменитель пищи

Оптимальное соотношение лейцина, изолейцина и валина в BCAA — 2:1:1. При повышенной потребности в лейцине можно принимать 4:1:1. Остальные пропорции, включая 8:1:1 и 10:1:1, не так эффективны и могут нарушить синтез белка в организме.

Как правильно принимать BCAA: дозировка, капсулы, таблетки, порошок

Рекомендуемая доза BCAA для компенсации затрат на тренировке — 0,3-0,5 г в час на 10 кг массы тела. Человеку массой 70 кг нужно 2,1-3,5 г BCAA в час.

Рекомендуемая суточная доза BCAA — 10-20 г в зависимости от массы тела, нагрузки и получения BCAA из других источников. Специалисты рекомендуют делить суточный объем на 2-5 приемов.

Неважно, работаете вы на рельеф, набор массы, развитие силовых показателей или пытаетесь похудеть: схема приема не меняется. Если тренировка длится больше 2 часов, можете принять 2-3 г BCAA во время тренировки. Это стимулирует обмен веществ, дает энергию и поможет быстрее восстановиться. Во всех остальных случаях принимайте BCAA до и после тренировки. Можно сочетать прием BCAA с протеином, гейнерами или другими спортивными добавками.

BCAA в дни отдыха

В дни отдыха организму нужно питание для восстановления, именно в этот период идет рост формы. Принимайте свою суточную норму BCAA утром, днем в промежутках между питанием, вечером перед сном.

Источник: eatthis.com

Как принимать BCAA в порошке

BCAA в порошке стоят ощутимо дешевле аналогов в капсулах или таблетках, но имеют несколько минусов:

  • плохо растворяются в воде
  • неприятный горький вкус

Самый простой способ приема порошковых BCAA: ложку сухих аминокислот запить большим количеством воды или напитка. Если вкус не напрягает или хотите принимать во время тренировки, BCAA можно разводить в любом напитке.

КУПИТЬ В ПОРОШКЕ

Как принимать BCAA в капсулах и таблетках

Капсулы и таблетки — самая удобная и распространенная форма BCAA. Капсулы удобно брать с собой и легко проглотить, не чувствуя горького вкуса аминокислот. Единственный минус этой формы — BCAA в капсулах и таблетках стоят дороже порошковых.

При покупке BCAA в капсулах обратите внимание не только на количество капсул в упаковке, но и размер порции. Посмотрите на этикетке размер порции и сколько чистых аминокислот в ней содержится. Например, в порции из 3 капсул может быть 5 г BCAA, а в порции из 4 капсул другого производителя — 3 г BCAA.

Важно! Перед применением любого спортивного питания изучите упаковку, инструкцию и следуйте рекомендациям производителя.

КУПИТЬ В КАПСУЛАХ | КУПИТЬ В ТАБЛЕТКАХ

Источник: bodynutrition.org

BCAA для похудения

BCAA, как и протеин, способствуют окислению жиров и притупляют аппетит. При этом, помогают сохранить мышцы во время похудения. Принимайте BCAA утром сразу после пробуждения, в течение дня в перерывах между едой, вечером перед сном. Однако, для этих целей экономичнее и эффективнее использовать сывороточный протеин. Он содержит весь комплекс аминокислот и не уступает по эффективности BCAA.

Кроме этого, можно построить питание так, чтобы получать необходимое количество протеина и BCAA из обычной еды.

BCAA в продуктах

Содержание BCAA в граммах на 100 г продукта:

  • Филе индейки — 4,5 г
  • Сыр — 4 г
  • Куриная грудка — 4 г
  • Арахис — 4 г
  • Говядина — 4 г
  • Рыба — 3 г
  • Яйцо 1 шт — 1,5 г
  • Молоко 100 мл — 0,7 г

Источник: verv.com

Почему BCAA не так эффективны, как протеин

 


Занимайтесь спортом, двигайтесь и путешествуйте! Если нашли ошибку или хотите обсудить статью — пишите в комментариях.

Подписывайтесь на нас в Telegram, ЯндексДзен, Вконтакте и Facebook

ВСЕ, ЧТО ВЫ ХОТЕЛИ ЗНАТЬ О ВСАА

Сегодня аминокислоты с разветвленными цепями (BCAA) — одна из самых популярных спортивных добавок. Увеличение мышечной массы, силы, энергии и даже эффективное сжигание жира — вот неполный список целей, в достижении которых BCAA оказываются незаменимыми помощниками.

НА СЧЕТ ТРИ

Начнем с теории: BCAA включает в себя три незаменимые аминокислоты — лейцин, изолейцин и валин. В каждой из них имеется разветвленная боковая цепь, напоминающая «ветку дерева», отсюда и название — «аминокислоты с разветвленными цепями». Несмотря на тот факт, что существует порядка 20 аминокислот, которые мышцы используют для своего роста, BCAA составляют почти треть от всех аминокислот, находящихся в мышцах тела человека.

После поступления любых аминокислот в организм (как в виде добавок, так и в составе белков), они оказываются в печени, которая немедленно разлагает их на элементы и использует для выработки энергии или восстановления мышц и других тканей тела.

Однако печень, как правило, оставляет целыми аминокислоты с разветвленными цепями, отправляя их непосредственно в мышцы для строительства или в качестве мышечного «топлива». Во время тренировок мышцы охотно используют ВСАА в виде энергии, а во время отдыха — например, после тренировки, — для строительства мышц.


ЗАЧЕМ ПРИНИМАТЬ ВСАА

Для дополнительной энергии во время тренировок

Мышцы с готовностью используют аминокислоты с разветвленными цепями в качестве топлива во время тренировок.

Интенсивные и длительные тренировки приводят к окислению аминокислот в мышцах и уменьшению их концентрации. Чтобы этому противостоять, необходимо принимать ВСАА непосредственно перед тренировкой. В таком случае они будут доступны мышцам в качестве прямого источника энергии.

Французские ученые нашли еще одно доказательство тому, что прием ВСАА способен вывести ваши тренировки на новый уровень: аминокислоты с разветвленными цепями влияют на количество поступающего в мозг триптофана, что в свою очередь снижает уровень особого гормона 5-HT, отвечающего за усталость.

Это позволит вам заниматься дольше и интенсивнее.

Еще одно важное действие аминокислот — повышение аэробной и анаэробной производительности. Экспериментально доказано, что после 10 недель регулярного потребления ВСАА (по 12 г/день) производительность спортсменов на пике активности увеличивается примерно на 19% по сравнению с плацебо.


Для роста мышечной массы и быстрого восстановления после тренировок

Прием ВСАА стимулирует синтез белков, усиливая рост мышц. Исследование, опубликованное в издании Frontiers Physiology, показало, что у людей, принимающих добавку BCAA после силовой тренировки, фиксировали на 22% выше синтез мышечного белка, чем у контрольной группы, не получавшей порцию аминокислот до занятия.

Во время и сразу после физических нагрузок, потребности в аминокислотах резко возрастают, тогда как их запас расходуется намного быстрее, чем в состоянии покоя. Получение дополнительной порции аминокислот позволяет поддерживать высокий уровень мышечного гликогена во время тренировки и стимулирует рост мышечной массы после ее завершения.

Для усиления жиросжигающего эффекта тренировок

Доказано, что прием аминокислот с разветвленными цепями при соблюдении низкокалорийного рациона, способствует более эффективному сжиганию жира. Дело в том, что при регулярных физических нагрузках и соблюдении диеты, количество гормона лептина снижается, что приводит к повышению аппетита и замедлению метаболизма: таким образом организм пытается сохранить запасы энергии. BCAA подавляют аппетит, увеличивают расход калорий за счет сжигания жира и повышают скорость обменных процессов.

Из трех аминокислот скорее всего именно лейцин обеспечивает сжигание жира. В исследовании California State University было отмечено, что регулярное употребление лейцина в течение шести недель значительно снизило объем телесного жира у участников эксперимента. Ученые предположили, что усиление синтеза белков, стимулированное лейцином, увеличивает расход энергии, помогая организму эффективнее избавляться от жировой ткани. Таким образом, прием аминокислот позволяет увеличить расход калорий за счет сжигания жира, повысить метаболизм, и, главное, защитить мышцы от разрушения.


СООТНОШЕНИЕ АМИНОКИСЛОТ

Самая распространенная формула ВСАА 2:1:1. Это означает, что на две части лейцина в составе добавки содержится по одной части валина и изойлецина. Многие производители изменяют соотношение в пользу лейцина, выпуская добавки с пропорцией действующих веществ 4:1:1, 8:1:1 и даже 10:1:1.

В ход научного исследования одна группа участников принимала до и после тренировок лейцин, другая — добавку BCAA с соотношением 2:1:1 кислот в составе, третья — плацебо. Эксперимент показал, что синтез белка в мышцах проходил лучше у группы, принимающей BCAA, что в очередной раз доказало важность всех трех аминокислот в процессе роста мышечной массы и восстановления после тренировок. Добавки с увеличенным содержанием лейцина подходят тем, кто испытывает дефицит аминокислоты в рационе (например, при веганской диете).

ПРАВИЛЬНЫЙ ПРИЕМ АМИНОКИСЛОТ

В зависимости от цели (набор мышечной массы, сжигание жира, увеличение энергии) эксперты рекомендуют принимать примерно 4-8 г ВСАА до четырех раз в день: утром после сна, за полчаса до тренировки, в течение получаса сразу после тренировки и с последним приемом пищи.

   Время     Преимущества
   Утром сразу после сна    Остановка разрушения мышечной ткани из-за ночного голодания
   Быстрый рост энергии
   Снижение чувства голода
   Перед тренировкой    Быстрый рост энергии
   Сила мышц
   После тренировки    Восстановление мышц
   Рост мышц
   Снижение степени крепатуры
   Между приемами пищи    Быстрый рост энергии
   Снижение чувства голода
   Последний прием пищи    Снижение чувства голода
   Замедление процесса разрушения мышечной ткани ночью

Что такое BCAA, для чего нужны, как и когда принимать

Что такое BCAA


Комплекс аминокислот BCAA (англ: Branched-Chain Amino Acids) представляет собой сочетание трёх значимых для человеческого организма аминокислот: лейцина, изолейцина и валина. Спортивные добавки с комплексами аминокислот просто незаменимы, поскольку самостоятельно организм не может их синтезировать. Они увеличивают эффективность тренировок, способствуют как росту мышечной ткани, так и похудению, широко востребованы в среде профессиональных спортсменов.

Для чего нужны BCAA

Функции комплекса и его воздействие на организм заключаются в следующем:

  • усиливает синтез белка. Активация роста  идёт через  mTOR;

  • регулирует катаболизм. Снижая выработку гормона кортизола, BCAA обеспечивает снижение разрушения мышечной ткани, способствуя при этом расщеплению жиров и углеводов, что очень важно для атлетов;

  • обеспечивает рост и восстановление мышц. Аминокислоты с разветвлёнными цепочками восполняют запас более трети всех содержащихся в мышечной ткани аминокислот, стимулируя её рост и восстановление;

  • ускоряет обмен веществ. BCAA способствует выработке лептина — регулирующего обмен веществ гормона. В результате этого происходит интенсивное расщепление жировых клеток;

  • служит дополнительным источником энергии. Это особенно актуально для сидящих на строгой низкоуглеводной диете спортсменов. При ней запасы гликогена и синтез организмом аминокислот минимальны, поэтому интенсивные физические нагрузки негативно отражаются на состоянии мышечной ткани и обмене веществ. Приём BCAA непосредственно перед тренировкой обеспечивает необходимый уровень аминокислот, достаточных для сохранения внутренних резервов организма.

Учитывая особенности воздействия на организм, комплекс аминокислот актуален как для снижения веса, так и для сохранения и наращивания мышечной массы. Поскольку сочетающиеся с диетой интенсивные тренировки ограничивают организм во внутренних ресурсах, BCAA даёт ему все необходимые вещества, позволяющие справляться с нагрузками.

Как принимать BCAA

Комплекс аминокислот BCAA и протеин увеличивают эффективность друг друга, принимать их можно как по отдельности, так и вместе. Также можно совмещать употребление аминокислот с приемом Л-каритина и Креатина. Но рекомендуется чередовать дни совместного и отдельного приема добавок.

Когда принимать BCAА

Исследования показали, что наибольшая эффективность от комплекса аминокислот достигается принятием его:

  • по утрам. Это позволяет сразу наполнить организм всеми необходимыми для активной деятельности аминокислотами;

  • до тренировок. Поскольку BCAA останавливает разрушение мышц, приём до тренировок снижает болезненность мышечных тканей на следующий день;

  • во время тренировок. Аминокислоты наполняют организм энергией, способствуют расщеплению жиров, заметно снижают чувство усталости;

  • непосредственно после тренировок. Это позволяет уменьшить распад мышц и актуально при низкокалорийных диетах.

Также наблюдается высокая эффективность при смешивании BCAA со спортивным питанием.

Сколько принимать BCAA


Сколько раз в день принимать: До тренировки и после неё.

Дозировка: 4-12 грамм, для начинающих спортсменов рекомендуемая дозировка составляет 5 грамм.

Дополнительно: Разводится в воде, допускается совместное употребление с протеиновыми коктейлями.

Важно учесть, что рекомендуемая частота приёма BCAA составляет не более 4 раз в день. Поэтому актуально будет приём аминокислот по утрам и во время тренировок периодически заменять употреблением спортивного питания и энергетических коктейлей.

BCAA 💪 для мышц 👍

Основные свойства BCAA

ВСАА – комплекс, состоящий из трех аминокислот. Они являются важным компонентом белка. Отличие bcaa от других аминокислот в том, что организм их не синтезирует. Три аминокислоты объединены в один комплекс, потому что их действие происходит одновременно и они взаимодополняют друг друга.

Топливо для мышц

Аминокислоты bcaa являются незаменимыми и должны поступать в организм в достаточных объёмах, особенно при больших физических нагрузках. Под понятием «незаменимые» понимается то, что организм не может самостоятельно их синтезировать.

Они являются расщеплёнными элементами протеина в виде таких аминокислот, как валин, лейцин, а также изолейцин. Это означает, что организму не нужно тратить энергию на их усвоение, которое происходит намного быстрее, чем при употреблении обычного белка.

BCAA необходим мышцам

Мышц на теле человека много и они отличаются по своим функциям и возможностям. Но структура схожая: самые весомые составляющие — вода (70-80%) и аминоклислоты (10-20%).

Эти три аминокислоты составляют порядка 35% в структуре всех аминокислот, из которых состоят мышцы. Если рассматривать только незаменимые, то доля будет 42%.

Это довольно много. До двадцати пяти процентов энергии при занятиях выделяется как раз из bcaa. При потреблении пищи, богатой протеином, первыми в кровь поступают именно эти аминокислоты.

Иными словами, если нет bcaa, мышцы начинают голодать. Регулярные занятия тяжелой атлетикой или пауэрлифтингом приводят к разрушению части сократительного белка. Очень важно в это время принимать именно тот белок, который необходим.

BCAA снимают усталость мышц, уменьшают потери других аминокислот, которые содержатся в организме. Если принимать bcaa непосредственно перед тренировкой, выносливость мышц повысится, а усталость снизится. Если принимать аминокислоты сразу после тренировки, начнет понижаться уровень кортизола и запас других аминокислот в мышцах увеличится при условии, что они не будут расщеплены для восстановления запасов энергии.

Но сразу нужно учесть тот факт, что в качестве заменителя протеиновых коктейлей, БЦАА не подходят. Это просто невыгодно — выпивая один коктейль, вы доставляете 40-50 грамм белка, а при приёме незаменимых аминокислот это число в 2-3 раза меньше. Конечно, вероятность усвоения организмом БЦАА намного выше, но и цена значительно дороже.

Поэтому такую роскошь себе могут позволить только бодибилдеры, которые готовы тратить на своё спортивное питание приличные суммы денежных средств. А так, зачастую их используют исключительно во время сушки, когда нежелательно принимать углеводы, которые в избытке могут превратиться жир. С функцией энергоснабжения, а также для сохранения набранной мышечной массы отлично подходят незаменимые аминокислоты, которые никак не смогут отложиться организмом в жировой ткани.

Функции BCAA

1. Прежде всего, БЦАА — это незаменимые аминокислоты, которые являются расщеплённым белком. То есть они являются строительным материалом для мышц.

2. Bcaa способствуют образованию других аминокислот, которые нужны организму для нормального функционирования. Другими словами, они помогают из аминокислот простой формы сделать более сложную структуру. Аминокислоты bcaa положительно влияют на выработку инсулина, который обеспечивает циркуляцию сахара в крови, а он, в свою очередь, питает клетки мышечных волокон энергией. А когда вырабатывается инсулин, усвоение аминокислот происходит быстрее.

3. Аминокислоты BCAA поддерживают кортизол и тестостерон на благоприятном уровне, увеличивают синтез белка, стимулируют выработку инсулина и гормонов роста.

4. BCAA предотвращает расщепление белка и блокирует потерю мышечных волокон. Это очень важно при низкокалорийной диете.

Исследования

Как показали исследования, чтобы уменьшить истощение мышечной ткани спортсменам необходимо употреблять достаточное количество незаменимых аминокислот.

Также было установлено, что у спортсменов, после тяжелой силовой тренировки, восстановление мышц проходит в две фазы следующие фазы.

Сначала идет катаболизм, после чего наступает анаболизм – рост мышечной ткани. Если анаболизм длится дольше катаболизма, то мышцы начнут усиленно расти. Если катаболизм будет длиться дольше, то наоборот. Если сократить период катаболизма, то можно достичь быстрого роста мышечной ткани. Как раз такому сокращению и могут поспособствовать БЦАА.

Однако, максимальную пользу можно извлечь, если принимать аминокислоты после тренировки одновременно с быстрыми углеводами, которые, в свою очередь, дадут мышцам дополнительный источник энергии и активизируют выработку инсулина. Приготовить такой коктейль просто. Достаточно смешать 25 грамм углеводов с десятью граммами белка. Пища будет способствовать вашему насыщению, а bcaa сократит катаболизм и увеличит эффект от тренировки.

Побочные действия

Многие недооценивают данный комплекс аминокислот. Кто-то считает, что принимать его опасно. Но это все идет от незнания внутренней работы организма. Аминокислоты bcaa – это те же аминокислоты, из которых состоит пища, к примеру, молоко или мясо. Поэтому вся опасность заключается лишь в том, насколько качественный продукт вы употребите.

Bcaa: как принимать?

Есть оптимальная доза, которая подходит большинству – это от четырех до восьми граммов как при наборе мышечной массы, так и при сжигании жира. Принимать аминокислоты необходимо до трех раз в сутки.

Можно потреблять и меньшее количество, но его не хватит, чтобы насытить организм. Многие производители понимают, что некоторые люди не знают всех нюансов и осознанно обманывают покупателей. В частности они выпускают аминокислоты в маленьких дозах, а цены при этом держат высокими. Чтобы не попасться на удочку, при покупке всегда обращайте внимание на количество порций и размер дозы. Перерывы при приеме не требуются.

Чтобы добиться более высоких результатов, необходимо принимать комплекс аминокислот BCAA отдельно от других аминокислот. Дело в том, что так они быстрее поступят в организм.

Поскольку аминокислоты намного лучше усваиваются при повышенном уровне инсулина, принимать их необходимо одновременно с пищей за полчаса до и после тренировки.

За это время восстановительные процессы успеют активизироваться и создадутся благоприятные условия для анаболизма.

Какие bcaa лучше?

Есть несколько комплексов аминокислот. Наиболее популярные из них:

Xtend от SciVation. Это очень сильная добавка, которая уменьшает фазу катаболизма, при этом мышцы начинают расти в несколько раз быстрее. Она содержит в себе все необходимые ингредиенты, которые доказали свою эффективность на практике. Глютамин, цитруллин, а также пиридоксин содержатся в ней в достаточных дозах. Эта добавка считается лучшей по следующим причинам:

— усиленное подавление катаболизма;
— ускорение синтеза белков;
— стимулирование гормона роста;
— ускорение репарации и многое другое.

Intra Fuel от SAN. Принимать препарат можно на протяжении тренировочного процесса. Его прием предотвращает разрушение мышечной ткани и повышает общую выносливость организма. Это также хороший вариант, который поможет вам вовремя доставить нужное количество аминокислот в организм.

SuperPump MAX от Gaspari Nutrition. Эта добавка очень популярна у спортсменов запада. Принимается она до начала тренировки и занимает лидирующие позиции на рынке продаж уже несколько лет. Однако при детальном исследовании выяснилось, что эта добавка может занимать максимум третье место, поскольку не содержит в себе достаточного количества активных веществ. Помимо этого, кроме аминокислот в комплекс входят многие другие компоненты. Это сказывается на стоимости добавки.

Если вы хотите максимально быстро восстанавливаться после тренировки, быть выносливее и сильнее, то вам просто необходимо принимать комплекс аминокислот bcaa. Никакого вреда от его приема нет, однако перед тем, как отправиться в магазин за товаром, почитайте о нем отзывы.

Также не стоит покупать препарат в подозрительных местах, поскольку вместо bcaa, там могут быть опасные для жизни вещества.

BCAA — для чего? Узнай, что такое BCAA (БЦАА)

Что такое bcaa, для чего нужен протеин, стоит ли пить гейнер? Такие вопросы вы можете задать своему тренеру, если недавно записались в спортзал и, освоив технику, решили узнать, как быстрее нарастить мышечную массу. Этот интерес совершенно логичен – зачем перетруждаться в зале, если можно выпить «волшебную пилюлю» и стать похожим на Геркулеса? Можем поспорить, что ваш тренер наверняка скажет, что употреблять такие добавки просто необходимо, и даже предложит вам что-то купить. Это и не удивительно — зарплата сотрудников фитнесс-зала зависит не столько даже от занятий с клиентами, сколько от прямых продаж спортивной фармакологии. А как дела обстоят на самом деле, есть ли необходимость в приеме аминокислот или протеиновых коктейлей?

Добавки и спортивное питание

Прежде чем спрашивать у тренера, стоит ли вам употреблять протеин, креатин или optimum bcaa, столь популярный сегодня, подумайте вот над чем.

Культуризм удит корнями ко временам героев античной Греции и Рима. Ахиллес, Геракл, боги Олимпийского пантеона из мифологии, да и обычные греки и римляне имели великолепные тела, не употребляя никаких добавок к своему обычному питанию. Их внешний вид обуславливался постоянным тренингом – боями и подготовкой к ним. Наверняка, подрастающие спартанцы не спрашивали про bcaa, для чего их употреблять, а просто работали над собой.

К чему все эти рассуждения? На самом деле получить красивое тело с естественной прорисовкой мышц реально для каждого. Спортивная фармакология – это бизнес, который зачастую предлагает фанатам бодибилдинга безвредное плацебо. Все препараты можно заменить обычным здоровым питанием (речь не идет, конечно, о стероидах).

Аминокислоты – что это такое

Если вам интересно знать значение термина «bcaa», что такое этот препарат и что он даст вашему организму, обратимся к физиологии.

Мы не можем нормально существовать и развиваться без ежедневного поступления в наш организм белков. Отчасти причина кроется в том, что белки содержат аминокислоты. Нужно отметить, что аминокислоты содержат все белки, как животного происхождения (мясо, птица, рыба, молочная продукция), так и растительного (бобовые и злаки).

Ученые выделяют более чем двести аминокислот, и из них двадцать две аминокислоты являются очень важными для здорового обмена веществ.

Заменимые и незаменимые аминокислоты

Большую часть необходимых аминокислот организм может синтезировать самостоятельно из других видов аминокислот (они являются заменимыми), но есть девять аминокислот, которые организм не может производить самостоятельно. Чтобы получать их, мы должны регулярно употреблять продукты, содержащих их. Какова потребность организма в этих девяти незаменимых аминокислотах? Ежедневно мы должны употреблять от 10 до 15 грамм аминокислот, то есть, потребляя с пищей более 70 грамм белка, мы покрываем имеющуюся потребность организма для здорового функционирования.

Но эта дозировка является нормальной для обычного человека. Тому же, кто занимается силовыми видами спорта, необходимо съедать каждый день в два раза больше белка (от 140 грамм), чтобы покрывать потребность организма в аминокислотах.

bcaa: что такое и сколько его нужно?

ВСАА (БЦАА) – это комбинация всего из трех видов незаменимых аминокислот. К ним относятся валин, изолейцин и лейцин. Сколько нужно употреблять БЦАА в день? Если речь идет о взрослом мужчине, чей вес составляет около 80 кг, то ему нужно 7 граммов этих аминокислот. Без БЦАА развитие организма затормаживается, все процессы прекращаются, в том числе и способность организма к регенерации и восстановлению. БЦАА – это важный продукт для каждого, но неужели мы должны принимать таблетки, чтобы получить его?

Можно ли получить ВСАА из еды?

Если и в продуктах питания содержится bcaa, что такое нужно есть, чтобы доставить аминокислоты в организм? Давайте разберемся!

Мясо курицы – 300 грамм в день достаточно, чтобы покрыть дневную норму в лизине, триптофане, гистидине, фениланине и ВСАА.

Фасоль, бобы, горох — богаты валином, триптофаном, треонином, метионином. 150 грамм в день будет достаточно для получения нормы аминокислот.

Творог, сыр – содержат триптофан, лизин, аргинин, валин, фенилаланин.
Яйцо – привычный нам продукт великолепно усваивается, богат ВСАА, метионином и фенилаланином.
Рыба – изолейцин, лизин и фенилаланин содержатся в этом продукте в больших количествах.
Крупа – гречка, пшено, овес являются источниками изолейцина, валина, гистидина, лейцина.
Орехи – кроме того, что они содержат в себе комплекс белковых соединений, орехи также богаты гистидином, изолейцином, треонином, лизином.

Смысл употребления ВСАА в добавках

Если незаменимые и самые лучшие bcaa содержатся в пище, то зачем употреблять добавки?

Как говорят производители спортивного питания и препаратов, те аминокислоты, которые содержатся в еде, имеют нестабильную форму. Это значит, что аминокислоты не усваиваются в чистом виде, а перед этим могут вступать в реакции и образовывать новые соединения. Следовательно, содержание полезных веществ не является величиной постоянной. Чтобы избежать потери аминокислот, спортсмены могут употреблять биологически активные добавки, к которым и относятся аминокислотные комплексы (содержат до 18-ти типов аминокислот), выделенные аминокислоты (добавка содержит всего одну аминокислоту) или ВСАА (как вы уже знаете, они содержат всего три вида аминокислот).

Как влияют ВСАА на рост мышц?

Известен факт, что человек является белковой формой жизни. Следовательно, аминокислоты, из которых состоят белки, необходимы организму. Особенно важно употребление важнейших аминокислот bcaa, для чего вы можете есть вышеперечисленные продукты или принимать определенные комплексы. — Читайте подробнее на FB.ru: http://fb.ru/article/146008/bcaa—dlya-chego-uznay-chto-takoe-bcaa-btsaa

Эти аминокислоты замедляют процессы разрушений мышечной ткани, стимулируют образование новой, ускоряют метаболические процессы и сжигание подкожного жира.

Прием ВСАА

Любопытно заметить, что описывая все преимущества использования комплексов ВСАА, производители фармакологических добавок «случайно» забывают сказать о том, что все эти свойства имеет обычная повседневная пища. Безусловно, употребляя ВСАА в капсулах, вы получите положительный эффект, но его воздействие будет необычайным только в том случае, если вы вообще не употребляете белков. К тому же одна пилюля столь популярного bcaa 1000 содержит всего-навсего 1 грамм белка.

Нужно ли употреблять ВСАА?

Внимательные читатели, прочитав про свойства аминокислот, могут задатся таким вопросом — препараты bcaa для чего употреблять, если тот же протеин состоит на третью часть из аминокислот? И они будут правы.

Если вы употребляете протеиновые коктейли, так как не можете получать необходимый белок из пищи, так зачем вам дополнительно еще платить за комплекс аминокислот?

Вам стоит знать про bcaa, что это всего лишь возможность увеличить длительность вашей тренировки, но не более того. Такой препарат также может дать позитивный эффект, когда вы покрываете суточную необходимость организма в белке из продуктов питания. Тем же, кто только начал заниматься в спортзале, вовсе нет необходимости принимать ВСАА.

Если же вы давно и увлеченно занимаетесь «строительством» своего тела и привыкли пользоваться спортивной фармой, то вам стоит задуматься – не тратите ли вы деньги впустую? Ведь вместо того, чтобы приобрести очередную порцию amino bcaa, вы можете с тем же успехом потратить средства на несколько килограмм мяса.

Никогда изобретения человека не превзойдут то, что дает нам природа. Соблюдая правила здорового, полноценного и сбалансированного питания, вы полностью насытите свой организм всем необходимым. Добавки же в виде аминокислот не повредят вам, но переплачивать за них нет никакого смысла.

 

BCAA – как правильно принимать, оптимальные дозировки и наилучшее время для приема.

Общеизвестно, что аминокислоты служат строительным материалом для организма. Мы употребляем их в пищу и управляем с их помощью биохимическими процессами, но не все аминокислоты организм способен синтезировать. Такие вещества называются незаменимыми и поступают только с пищей или специальными добавками. Напрямую влияют на развитие мускулатуры три незаменимых аминокислоты: лейцин, изолейцин и валин. За разветвлённую структуру их назвали Branched-chain Amino Acids. Разберём подробнее, зачем они нужны и как приём БЦАА влияет на тренировочный процесс.


Что мы получаем, когда пьём Бцаа?

  • Лейцин — стимулирует рост мышц и ускоряет расщепление жировых отложений. Он способен усиливать анаболическое действие остальных аминокислот, поэтому считается эффективной добавкой к сывороточным коктейлям. Важно принимать bcaa правильно и учитывать, как протекают процессы катаболизма в течение дня. Тогда значительно сократится время мышечного восстановления, что позволит улучшить спортивные результаты.

  • Валин — участвует в заживлении микроразрывов мышц после тренировки. Следовательно, процесс регенерации протекает эффективнее, а мышечная ткань растёт быстрее. Аминокислота участвует в сохранении азотистого баланса, что ускоряет все биохимические реакции.

  • Изолейцин — повышает общую выносливость, так как стимулирует синтез гемоглобина. Обладает общим тонизирующим эффектом, нормализует обмен веществ и не даёт разрушаться мышечным волокнам.


Как правильно принимать bcaa: рассчитываем дозировку и время

Как принимается БЦАА в дни тренировок

Интенсивная мышечная работа требует энергии. В качестве её источника организм использует гликоген — запас сахаров из пищи. Это доступная энергия, но она быстро заканчивается. И тогда начинается распад мышечной ткани: белки расщепляются до аминокислот, которые тут же сжигаются. Как следует принимать БЦАА, чтобы катаболические процессы обратить в анаболические?

Препарат принимается перед тренировкой и сразу после неё. BCAA мгновенно всасываются в кровь и попадают к мышцам, сывороточному белку для этого понадобится гораздо больше времени. Так как питательная среда уже есть, организм и не думает расщеплять собственные ткани. Плюс улучшается питание и кровообращение в мышцах.

Как пить Бцаа в дни отдыха

Катаболические реакции действуют даже во время отдыха мышц. Особенно активны они с утра, во время пробуждения. Если не хотите терять даже малую часть результата, над которым работали вчера в спортзале — не забывайте про утренний приём BCAA. Треть от обычной дозы даст мышечным волокнам питательные вещества и энергию, поможет быстрее восстановиться после интенсивных нагрузок.


Формы препаратов BCAA

  • Самый экономичный способ — принимать bcaa в порошке. Как это лучше сделать? Порцию BCAA смешиваете с водой, согласно указаниям на этикетке продукта. У порошковых смесей иногда горький вкус и они плохо растворяются. Другой вариант – съешьте требуемую дозу с ложки и запейте большим количеством воды. Сейчас выпускают порошки с вкусовыми добавками, можно поэкспериментировать и найти оптимальный для себя способ употребления.

  • Дороже, но удобнее — bcaa в капсулах. Как их принимать и насколько удобнее носить с собой — вопросов не возникает. Нейтральный вкус является важным достоинством, но одной упаковки хватает ненадолго (в сравнении с bcaa в порошке).


  • Bcaa выпускаются также в таблетках и жевательных формах, представляют собой прессованный порошок. Как и bcaa в капсулах, таблетки удобны в использовании, но усваиваются дольше.

  • Жидкие Бца усваиваются чуть быстрее, чем растворенный порошок. Их плюсом является то, что они не требуют приготовления.

Каждый сам для себя решает, стоит ли пить БЦАА. При сбалансированной диете можно получить те же аминокислоты из пищи. Но питаться правильно не всегда удаётся, а во время интенсивной тренировки мышцам не поможет плотный обед. Только готовая смесь быстро поступает к мышечным волокнам и предотвращает их катаболизм.

Аминокислоты BCAA 4:1:1 Tabs — Nutrend for Bikepeople

Новый подход к обеспечению организма аминокислотами с разветвлёнными цепями для тяжелых силовых тренировок. Революционное анаболическое соотношение существенных аминокислот  4:1:1 (L-лейцин, L-изолейцин, L-валин) используется для максимального и продолжительного роста мышц. 

Мы представляем абсолютно новый подход к обеспечению организма аминокислотами с разветвлёнными цепями для тяжелых силовых тренировок. Революционное анаболическое соотношение существенных аминокислот – 4:1:1 (L-лейцин, L-изолейцин, L-валин) – используется для максимального и продолжительного роста мышц. В конечном итоге мы предлагаем вам неограниченную концентрацию и соотношение аминокислот с разветвлёнными цепями! Позвольте вашим мышцам воспользоваться длительным снабжением анаболическими веществами, которые ускорят ваш путь к цели. Впервые на рынке!  

BCAA 4:1:1 Tabs предназначен исключительно для тяжело и интенсивно тренирующихся спортсменов, которые стремятся достичь максимального роста мышечной массы в сочетании с продолжительным эффектом.

Чем более интенсивны ваши тренировки, тем больше ваши мышцы потребляют существенную аминокислоту L-лейцин! Мышечные ткани отдают предпочтение L-лейцину по сравнению с двумя оставшимися аминокислотами из цепочки аминокислот с разветвлёнными цепями. Если вы тренируетесь очень интенсивно, использование L-лейцина происходит в 4 раза быстрее! Тем не менее, чтобы обеспечить максимальную усвояемость существенных аминокислот, важно поставлять их в организм все вместе в специальном правильном соотношении! Революционное соотношение 4:1:1 даст вам то, что вы ожидаете от ваших тренировок – более твёрдые и сильные мышцы.

L-лейцин из всех трёх аминокислот с разветвлёнными цепями отвечает за стимуляцию синтеза белка в мышечных тканях и именно поэтому важно поддерживать правильное соотношение существенных аминокислот в организме. Комплекс аминокислот должен содержать L-лейцин в большем объёме, чем другие аминокислоты. L-валин и L-изолейцин помогают, например, поддерживать положительный баланс азота в мышцах и обеспечивать качественное восстановление повреждённых мышечных тканей (разрушение тканей может возникнуть в ходе интенсивных тренировок). Если ваш организм не обладает достаточными качественными источниками аминокислот для восстановления повреждённых тканей, тогда восстановление будет происходить за счёт менее ценных соединений, что повлечёт за собой ограничение интенсивности тренировок. И, как результат, это также ограничит рост мышечной массы. Чтобы избежать этой неприятной стадии, важно соблюдать правильную дозировку и соотношение аминокислот с разветвлёнными цепями.

BCAA в соотношении 4:1:1 обеспечивает непревзойдённо высокий уровень синтеза мышечного белка. А благодаря революционному соотношению аминокислот достигается откладывание наступления усталости, которая естественным образом возникает во время тренировок.

Рекомендуемая дозировка:

  • Принимайте продукт соответственно вашему весу:
    • ваш вес до 90 кг, – вам необходимо принимать 6 таблеток в день;
    • ваш вес в промежутке между 90 и 120 кг – вам следует принимать 8 таблеток в день;
    • ваш вес более 120 кг – вам следует повысить количество таблеток до 10 в день.
  • С целью повышения результативности деятельности принимайте половину вашей дневной дозы за 45-60 минут до тренировки.
  • С целью максимального стимулирования восстановления принимайте вторую дозу непосредственно после тренировки.

Использование:

В соответствии с рекомендуемой дозировкой проглотите капсулы и запейте их значительным количеством воды или спортивного напитка. Молоко и алкогольные напитки не пригодны для запивания. Не раскусывайте таблетки! После открывания следует сберегать продукт при температуре ниже 25 °C и употребить в течение 3 месяцев.

Упаковка:

  • 100 таблеток;
  • 300 таблеток.

Состав:

L-лейцин, другие ингредиенты — мальтодекстрин, L-изолейцин, L-валин, другие ингредиенты — натриевая соль карбометилцеллюлоза, гидроксипропилметилцеллюлоза, диоксид силиция и стеарат магния.

Продукт предназначен для специального питания. Не предназначен для употребления детьми, беременными и кормящими женщинами. Тщательно беречь от детей! Не содержит веществ, являющихся допингом. Хранить в сухом месте при температуре ниже 25 ° C вдали от прямых солнечных лучей. Оберегать от замерзания. Производитель не несёт ответственности за любой вред, причинённый в результате ненадлежащего использования или хранения продукта. Аллерген: лактоза. Без ГМО.

Пищевая ценность:
 100 г1 таблетка
Энергетическая ценность1267 кДж/298 ккал25 кДж/6 ккал
Белки51 г1 г
Углеводы23,5 г0,5 г
Жиры0 г0 г
L-лейцин50 г
L-изолейцин12,5 г0,25 г
L-валин12,5 г0,25 г

1 таблетка: 2000 мг

Вес: 600 г

Аминокислоты с разветвленной цепью: использование и риски

Что такое аминокислоты с разветвленной цепью?

Аминокислоты с разветвленной цепью (BCAA) являются незаменимыми питательными веществами. Это белки, содержащиеся в пище. Ваши мышцы «сжигают» эти аминокислоты для получения энергии.

Названиями конкретных аминокислот, составляющих аминокислоты с разветвленной цепью, являются лейцин, изолейцин и валин. Термин разветвленная цепь просто относится к их химической структуре.

BCAA также можно принимать в виде добавок.В некоторых случаях медицинские работники могут вводить BCAA внутривенно (внутривенно).

Преимущества аминокислот с разветвленной цепью

Аминокислоты с разветвленной цепью являются незаменимыми питательными веществами, которые помогают поддерживать метаболизм мышц и важны для построения белка в мышечной ткани. Если вы спортсмен или культурист, вы можете принимать пероральные добавки с аминокислотами с разветвленной цепью (BCAA), чтобы попытаться помочь с восстановлением после тренировок и улучшить спортивные результаты.

Исследования показывают, что BCAA могут предотвратить разрушение мышц во время упражнений.Но вряд ли они улучшат спортивные результаты.

BCAA могут помочь:

  • Привести к росту мышц
  • Уменьшить болезненность мышц
  • Снизить усталость от упражнений
  • Предотвратить истощение мышц
  • Повысьте аппетит, если вы недоедаете или больны раком
  • Облегчение симптомов поздней дискинезии
  • Облегчить симптомы печеночной энцефалопатии, вызванной циррозом
  • Защитить людей с циррозом от рака печени
  • Лечить определенные расстройства мозга
  • Улучшить умственную функцию у людей с фенилкетонурией
Продолжение

Хотя сообщается, что BCAA помогают при диабете наследственная форма расстройства аутистического спектра, пока нет достаточных доказательств в поддержку такого использования.

Дозировки BCAA варьируются в зависимости от причины использования. Качество и активные ингредиенты в добавках могут сильно различаться от производителя к производителю. Это затрудняет установление стандартной дозы.

Аминокислоты с разветвленной цепью и диета

Вы можете получить аминокислоты с разветвленной цепью из следующих продуктов:

  • Сыворотка, молоко и соевые белки
  • Кукуруза
  • Говядина, курица, рыба и яйца
  • Печеные бобы и фасоль лима
  • Нут
  • Чечевица
  • Цельная пшеница
  • Коричневый рис
  • Миндаль, бразильские орехи и кешью
  • Семена тыквы

Риски и побочные эффекты аминокислот с разветвленной цепью

Побочные эффекты. При приеме до 6 месяцев пероральные добавки BCAA не часто связаны с вредными побочными эффектами. Однако побочные эффекты могут включать:

Риски. BCAA могут влиять на уровень глюкозы в крови во время и после операции. Вы также можете подвергаться повышенному риску, если у вас хронический алкоголизм или кетоацидурия с разветвленной цепью.

Продолжение

Также избегайте использования BCAA, если вы беременны или кормите грудью.

Взаимодействия. Сначала поговорите со своим врачом, если вы принимаете:

Сообщите своему врачу о любых добавках, которые вы принимаете, даже если они натуральные.Таким образом, ваш врач может проверить любые возможные побочные эффекты или взаимодействия с лекарствами или продуктами питания. Они могут сообщить вам, может ли добавка увеличить ваш риск.

FDA не регулирует пищевые добавки. Тем не менее, он одобрил инъекционную аминокислоту с разветвленной цепью для противодействия потере азота.

Функция BCAA (аминокислот с разветвленной цепью) во время занятий спортом

Белки, из которых состоит тело, состоят из 20 различных аминокислот

Белки — незаменимые компоненты в строении человеческого тела.Они состоят из комбинации 20 различных аминокислот.

Все 20 аминокислот необходимы для построения тела.
Поскольку незаменимые аминокислоты не могут быть синтезированы в организме,
они должны быть получены из пищи.

Белки, из которых состоит человеческое тело, состоят из 20 различных аминокислот (9 незаменимых аминокислот + 11 заменимых аминокислот). Функция и форма каждого белка варьируются в зависимости от количества, типа и порядка комбинации его аминокислот.Все 20 аминокислот необходимы для построения тела, но незаменимые аминокислоты не могут быть синтезированы в организме и должны быть получены с пищей. Незаменимые аминокислоты, которые превращаются в энергию в мышцах, — это валин, лейцин и изолейцин, а общее название этих трех аминокислот — «BCAA (аминокислоты с разветвленной цепью)».

Три функции BCAA

Если вы употребляете BCAA перед тренировкой и используете их в качестве источника энергии, они помогут вам поддерживать вашу работоспособность.Их основные функции заключаются в следующем.

  1. 1 Содержит 30-40% незаменимых аминокислот, из которых состоят мышцы
  2. 2 Предотвращение расщепления мышечных белков
  3. 3 Используется как эффективный источник энергии во время упражнений

BCAA — общее название валина, лейцина и изолейцина.
BCAA — это аминокислоты, которые подавляют распад белка и используются в качестве эффективного источника энергии во время упражнений.

Отчет об исследовании потребления BCAA во время тренировки

Если вы постоянно пьете напиток, содержащий BCAA, концентрация BCAA в вашем кровотоке повышается перед тренировкой.Многочисленные исследования сообщают, что это дает много преимуществ, таких как эффективное использование BCAA в качестве источника энергии во время упражнений и подавление выработки молочной кислоты для повышения выносливости.

Другие направления деятельности

Аминокислоты с разветвленной цепью для здоровья и болезней: метаболизм, изменения в плазме крови и в качестве пищевых добавок | Питание и обмен веществ

  • 1.

    Chen L, Chen Y, Wang X, Li H, Zhang H, Gong J, Shen S, Yin W, Hu H. Эффективность и безопасность перорального приема аминокислот с разветвленной цепью у пациентов, перенесших вмешательства для гепатоцеллюлярной карциномы: метаанализ.Нутр Дж. 2015; 14: 67.

    PubMed PubMed Central Статья CAS Google Scholar

  • 2.

    Бифари Ф., Нисоли Э. Аминокислоты с разветвленной цепью по-разному модулируют катаболические и анаболические состояния у млекопитающих: фармакологическая точка зрения. Br J Pharmacol. 2017; 174: 1366–77.

    CAS PubMed Статья Google Scholar

  • 3.

    Харпер А.Е., Миллер Р.Х., Блок КП.Метаболизм аминокислот с разветвленной цепью. Анну Рев Нутр. 1984; 4: 409–54.

    CAS PubMed Статья Google Scholar

  • 4.

    Холечек М. Метаболизм лейцина у голодных крыс и крыс, получавших фактор некроза опухоли. Clin Nutr. 1996; 15: 91–3.

    CAS PubMed Статья Google Scholar

  • 5.

    Holecek M, Sprongl L, Skopec F, Andrýs C., Pecka M. Метаболизм лейцина у крыс, получавших TNF-α и эндотоксин: вклад ткани печени Am J Phys 1997; 273: E1052 – E1058.

  • 6.

    Свейн Л.М., Шиота Т., Вальзер М. Использование для синтеза белка лейцина и валина по сравнению с их кетоаналогами. Am J Clin Nutr. 1990; 51: 411–5.

    CAS PubMed Статья Google Scholar

  • 7.

    Холечек М., Шпронгл Л., Тихи М., Пецка М. Метаболизм лейцина в печени крысы после болюсной инъекции эндотоксина. Обмен веществ. 1998. 47: 681–5.

    PubMed Статья Google Scholar

  • 8.

    Holecek M, Rysava R, Safranek R, Kadlcikova J, Sprongl L. Острые эффекты снижения поступления глутамина на метаболизм белков и аминокислот в ткани печени: исследование с использованием изолированной перфузированной печени крысы. Обмен веществ. 2003. 52: 1062–7.

    CAS PubMed Статья Google Scholar

  • 9.

    Adibi SA. Влияние диетических деприваций на плазменную концентрацию свободных аминокислот человека. J Appl Physiol. 1968; 25: 52–7.

    CAS PubMed Статья Google Scholar

  • 10.

    Холечек М., Мичуда С. Концентрации аминокислот и белковый метаболизм двух типов скелетных мышц крыс в постпрандиальном состоянии и после кратковременного голодания. Physiol Res. 2017; 66: 959–67.

    PubMed Google Scholar

  • 11.

    Холечек М. Цикл BCAA-BCKA: его связь с синтезом аланина и глутамина и белковым балансом. Питание. 2001; 17:70.

    CAS PubMed Статья Google Scholar

  • 12.

    Наир К.С., Короткий КР. Гормональная и сигнальная роль аминокислот с разветвленной цепью. J Nutr. 2005; 135: 1547S – 52S.

    CAS PubMed Статья Google Scholar

  • 13.

    Флойд Дж. К. Младший, Фаянс СС, Конн Дж. У., Кнопф РФ, Рулл Дж. Стимуляция секреции инсулина аминокислотами. J Clin Invest. 1966; 45: 1487–502.

    CAS PubMed PubMed Central Статья Google Scholar

  • 14.

    Tischler ME, Desautels M, Goldberg AL. Регулирует ли лейцин, лейцил-тРНК или какой-либо метаболит лейцина синтез и деградацию белка в скелетных и сердечных мышцах? J Biol Chem. 1982; 257: 1613–21.

    CAS PubMed Google Scholar

  • 15.

    Mitch WE, Walser M, Sapir DG. Сбережение азота, вызванное лейцином, по сравнению с его кето-аналогом, альфа-кетоизокапроатом, у людей с ожирением натощак. J Clin Invest.1981; 67: 553–62.

    CAS PubMed PubMed Central Статья Google Scholar

  • 16.

    Сапир Д.Г., Стюарт П.М., Вальзер М., Мореадит С., Мойер Э.Д., Имбембо А.Л. и др. Влияние альфа-кетоизокапроата и лейцина на метаболизм азота у послеоперационных пациентов. Ланцет. 1983; 1 (8332): 1010–4.

    CAS PubMed Статья Google Scholar

  • 17.

    Голечек М.Добавка бета-гидрокси-бета-метилбутирата и скелетных мышц в здоровых условиях и в условиях истощения мышц. J Cachexia Sarcopenia Muscle. 2017; 8: 529–41.

    PubMed PubMed Central Статья Google Scholar

  • 18.

    Fischer JE, Funovics JM, Aguirre A, James JH, Keane JM, Wesdorp RI, et al. Роль аминокислот в плазме при печеночной энцефалопатии. Операция. 1975; 78: 276–90.

    CAS PubMed Google Scholar

  • 19.

    Педросо Дж. А., Зампиери Т. Т., Донато Дж. Анализ влияния добавок L-лейцина на регулирование потребления пищи, энергетического баланса и гомеостаза глюкозы. Питательные вещества. 2015; 7: 3914–37.

    CAS PubMed PubMed Central Статья Google Scholar

  • 20.

    Нишитани С., Такехана К., Фудзитани С., Сонака И. Аминокислоты с разветвленной цепью улучшают метаболизм глюкозы у крыс с циррозом печени. Am J Physiol Gastrointest Liver Physiol.2005; 288: G1292–300.

    CAS PubMed Статья Google Scholar

  • 21.

    Zhang S, Zeng X, Ren M, Mao X, Qiao S. Новые метаболические и физиологические функции аминокислот с разветвленной цепью: обзор. J Anim Sci Biotechnol. 2017; 8: 10.

    PubMed PubMed Central Статья CAS Google Scholar

  • 22.

    Um SH, D’Alessio D, Thomas G. Перегрузка питательными веществами, инсулинорезистентность и рибосомный белок S6 киназа 1, S6K1.Cell Metab. 2006; 3: 393–402.

    CAS PubMed Статья Google Scholar

  • 23.

    Tremblay F, Lavigne C, Jacques H, Marette A. Роль пищевых белков и аминокислот в патогенезе инсулинорезистентности. Анну Рев Нутр. 2007. 27: 293–310.

    CAS PubMed Статья Google Scholar

  • 24.

    White PJ, Lapworth AL, An J, Wang L, McGarrah RW, Stevens RD, et al.Ограничение аминокислот с разветвленной цепью у крыс Zucker-fatty улучшает чувствительность к инсулину в мышцах за счет повышения эффективности окисления жирных кислот и экспорта ацил-глицина. Mol Metab. 2016; 5: 538–51.

    CAS PubMed PubMed Central Статья Google Scholar

  • 25.

    Манчестер KL. Окисление аминокислот изолированной диафрагмой крысы и влияние инсулина. Biochim Biophys Acta. 1965; 100: 295–8.

    CAS PubMed Статья Google Scholar

  • 26.

    Холечек М., Симан П., Воденикаровова М., Кандар Р. Изменения в метаболизме белков и аминокислот у крыс, получавших диету, обогащенную аминокислотами с разветвленной цепью или лейцином, во время постпрандиального и постабсорбтивного состояний. Нутр Метаб (Лондон). 2016; 13: 12.

    Артикул CAS Google Scholar

  • 27.

    Adibi SA. Метаболизм аминокислот с разветвленной цепью при изменении питания. Обмен веществ. 1976; 25: 1287–302.

    CAS PubMed Статья Google Scholar

  • 28.

    Schauder P, Herbertz L, Langenbeck U. Аминокислотный и кетокислотный ответ с разветвленной цепью в сыворотке крови на голодание у людей. Обмен веществ. 1985; 34: 58–61.

    CAS PubMed Статья Google Scholar

  • 29.

    Фрибург Д.А., Барретт Э.Д., Луар Р.Дж., Гельфанд Р.А. Влияние голодания на метаболизм мышечных белков человека и его реакцию на инсулин. Am J Phys. 1990; 259: E477–82.

    CAS Google Scholar

  • 30.

    Holecek M, Sprongl L, Tilser I. Метаболизм аминокислот с разветвленной цепью у голодных крыс: роль ткани печени. Physiol Res. 2001. 50: 25–33.

    CAS PubMed Google Scholar

  • 31.

    Адиби С.А., Петерсон Дж. А., Кшисик Б. А.. Регулирование активности лейцинтрансаминазы диетическими средствами. Am J Phys. 1975; 228: 432–5.

    CAS Google Scholar

  • 32.

    Sketcher RD, Fern EB, James WP.Адаптация мышечного окисления лейцина к диетическому белку и потребляемой энергии. Br J Nutr. 1974; 31: 333–42.

    CAS PubMed Статья Google Scholar

  • 33.

    Холечек М. Влияние голодания на активность дегидрогеназы альфа-кетокислот с разветвленной цепью в сердце и скелетных мышцах крыс. Physiol Res. 2001; 50: 19–24.

    CAS PubMed Google Scholar

  • 34.

    Гримбл РФ, Уайтхед Р.Г. Изменение концентрации специфических аминокислот в сыворотке крови экспериментально истощенных свиней. Br J Nutr. 1970; 24: 557–64.

    CAS PubMed Статья Google Scholar

  • 35.

    Holt LE, Snyderman SE, Norton PM, Roitman E, Finch J. Аминограмма плазмы в квашиоркоре. Ланцет. 1963; 2 (7322): 1342–8.

    PubMed Google Scholar

  • 36.

    Трости PJ. Катаболизм валина у истощенных крыс. Исследования in vivo и in vitro с различными мечеными формами валина. Br J Nutr. 1974; 31: 259–70.

    CAS PubMed Статья Google Scholar

  • 37.

    Варен Дж., Фелиг П., Хагенфельдт Л. Влияние приема белка на внутренний и нижний метаболизм у нормального человека и у пациентов с сахарным диабетом. J Clin Invest. 1976; 57: 987–99.

    CAS PubMed PubMed Central Статья Google Scholar

  • 38.

    Холечек М., Коварик М. Изменение белкового обмена и концентрации аминокислот у крыс, получавших высокобелковую (обогащенную казеином) диету — эффект голодания. Food Chem Toxicol. 2011; 49: 3336–42.

    CAS PubMed Статья Google Scholar

  • 39.

    Watford M. Пониженные концентрации аминокислот с разветвленной цепью приводят к нарушению роста и неврологическим проблемам: выводы из модели мышей с дефицитом киназы комплекса альфа-кетокислот дегидрогеназы с разветвленной цепью.Nutr Rev.2007; 65: 167–72.

    PubMed Статья Google Scholar

  • 40.

    Энтони Т.Г., Рейтер А.К., Энтони Дж.С., Кимбалл С.Р., Джефферсон Л.С. Дефицит ЕАА с пищей преимущественно ингибирует трансляцию мРНК рибосомных белков в печени крыс, получавших пищу. Am J Physiol Endocrinol Metab. 2001; 281: E430–9.

    CAS PubMed Статья Google Scholar

  • 41.

    Бломстранд Э.Аминокислоты и центральная усталость. Аминокислоты. 2001; 20: 25–34.

    CAS PubMed Статья Google Scholar

  • 42.

    Дасарати С., Хатцоглу М. Гипераммонемия и протеостаз при циррозе печени. Curr Opin Clin Nutr Metab Care. 2018; 21: 30–6.

    PubMed Статья Google Scholar

  • 43.

    Leweling H, Breitkreutz R, Behne F, Staedt U, Striebel JP, Holm E. Вызванное гипераммонемией истощение глутамата и аминокислот с разветвленной цепью в мышцах и плазме.J Hepatol. 1996. 25: 756–62.

    CAS PubMed Статья Google Scholar

  • 44.

    Холечек М., Шпронгл Л., Тихи М. Влияние гипераммониемии на лейциновый и белковый обмен у крыс. Обмен веществ. 2000; 49: 1330–4.

    PubMed Статья Google Scholar

  • 45.

    Холечек М., Кандар Р., Сиспера Л., Коварик М. Острая гипераммонемия активирует катаболизм аминокислот с разветвленной цепью и снижает их внеклеточные концентрации: различная чувствительность красных и белых мышц.Аминокислоты. 2011; 40: 575–84.

    CAS PubMed Статья Google Scholar

  • 46.

    Holeček M, Mráz J, Tilšer I. Аминокислоты плазмы в четырех моделях экспериментального повреждения печени у крыс. Аминокислоты. 1996; 10: 229–41.

    PubMed Статья Google Scholar

  • 47.

    Davis JM, Alderson NL, Welsh RS. Серотонин и усталость центральной нервной системы: рекомендации по питанию.Am J Clin Nutr. 2000; 72: 573С – 8С.

    CAS PubMed Статья Google Scholar

  • 48.

    Холечек М. Три цели добавления аминокислот с разветвленной цепью при лечении заболеваний печени. Питание. 2010; 26: 482–90.

    CAS PubMed Статья Google Scholar

  • 49.

    Холечек М., Симек Дж., Палика В., Задак З. Влияние инфузии глюкозы и аминокислот с разветвленной цепью (BCAA) на начало регенерации печени и аминокислотный паттерн в плазме у частично гепатэктомированных крыс.J Hepatol. 1991; 13: 14–20.

    CAS PubMed Статья Google Scholar

  • 50.

    Алс-Нильсен Б., Корец Р.Л., Кьяргард Л.Л., Глууд С. Аминокислоты с разветвленной цепью для печеночной энцефалопатии. Кокрановская база данных Syst Rev.2003; 2: CD001939.

    Google Scholar

  • 51.

    Gluud LL, Dam G, Les I, Córdoba J, Marchesini G, Borre M, et al. Аминокислоты с разветвленной цепью для людей с печеночной энцефалопатией.Кокрановская база данных Syst Rev.2015; 9: CD001939.

    Google Scholar

  • 52.

    Холечек М. Добавки аминокислот с разветвленной цепью в лечении цирроза печени: обновленные взгляды на то, как уменьшить их вредное воздействие на катаплероз и образование аммиака. Питание. 2017; 41: 80–5.

    PubMed Статья CAS Google Scholar

  • 53.

    Родни С., Боне А. Профили аминокислот у пациентов с нарушениями цикла мочевины при поступлении в больницу из-за метаболической декомпенсации.JIMD Rep. 2013; 9: 97–104.

    CAS PubMed Статья Google Scholar

  • 54.

    Холечек М. Доказательства порочного цикла в синтезе и распаде глутамина в патогенезе печеночной энцефалопатии — терапевтические перспективы. Metab Brain Dis. 2014; 29: 9–17.

    CAS PubMed Статья Google Scholar

  • 55.

    Холечек М., Воденикаровова М., Симан П. Острые эффекты фенилбутирата на метаболизм глутамина, аминокислот с разветвленной цепью и белков в скелетных мышцах крыс.Int J Exp Pathol. 2017; 98: 127–33.

    CAS PubMed Статья PubMed Central Google Scholar

  • 56.

    Brunetti-Pierri N, Lanpher B, Erez A, Ananieva EA, Islam M, Marini JC, et al. Фенилбутиратная терапия при болезни мочи кленовым сиропом. Hum Mol Genet. 2011; 20: 631–40.

    CAS PubMed Статья Google Scholar

  • 57.

    Scaglia F, Carter S, O’Brien WE, Lee B.Влияние альтернативной терапии на метаболизм аминокислот с разветвленной цепью у пациентов с нарушением цикла мочевины. Mol Genet Metab. 2004. 81: S79–85.

    CAS PubMed Статья Google Scholar

  • 58.

    Adam S, Almeida MF, Assoun M, Baruteau J, Bernabei SM, Bigot S, et al. Диетическое лечение нарушений цикла мочевины: европейская практика. Mol Genet Metab. 2013; 110: 439–45.

    CAS PubMed Статья Google Scholar

  • 59.

    Schauder P, Matthaei D, Henning HV, Scheler F, Langenbeck U. Уровни в крови аминокислот с разветвленной цепью и альфа-кетокислот у пациентов с уремией, получавших кетоаналоги незаменимых аминокислот. Am J Clin Nutr. 1980; 33: 1660–6.

    CAS PubMed Статья Google Scholar

  • 60.

    Гариботто Г., Паолетти Э., Фиорини Ф., Руссо Р., Робаудо С., Деферрари Г., Тицианелло А. Периферический метаболизм кетокислот с разветвленной цепью у пациентов с хронической почечной недостаточностью.Miner Electrolyte Metab. 1993; 19: 25–31.

    CAS PubMed Google Scholar

  • 61.

    Holecek M, Sprongl L, Tilser I., Tichý M. Лейцин и метаболизм белков у крыс с хронической почечной недостаточностью. Exp Toxicol Pathol. 2001; 53: 71–6.

    CAS PubMed Статья Google Scholar

  • 62.

    Альвестранд А., Фюрст П., Бергстрём Дж. Аминокислоты в плазме и мышцах при уремии: влияние питания с аминокислотами.Clin Nephrol. 1982; 18: 297–305.

    CAS PubMed Google Scholar

  • 63.

    Hara Y, May RC, Kelly RA, Mitch WE. Ацидоз, а не азотемия, стимулирует катаболизм аминокислот с разветвленной цепью у уремических крыс. Kidney Int. 1987. 32: 808–14.

    CAS PubMed Статья Google Scholar

  • 64.

    May RC, Masud T, Logue B, Bailey J, England BK. Метаболический ацидоз ускоряет деградацию белков всего тела и окисление лейцина по глюкокортикоидозависимому механизму.Miner Electrolyte Metab. 1992; 18: 245–9.

    CAS PubMed Google Scholar

  • 65.

    Teplan V, Schück O, Horácková M, Skibová J, Holecek M. Влияние кетокислотно-аминокислотной добавки на метаболизм и почечную элиминацию аминокислот с разветвленной цепью у пациентов с хронической почечной недостаточностью. низкобелковая диета. Wien Klin Wochenschr. 2000; 112: 876–81.

    CAS PubMed Google Scholar

  • 66.

    Ковесди С.П., Коппле Дж.Д., Калантар-Заде К. Управление белково-энергетической потерей при недиализно-зависимой хронической болезни почек: сочетание низкого потребления белка с диетической терапией. Am J Clin Nutr. 2013; 97: 1163–77.

    CAS PubMed PubMed Central Статья Google Scholar

  • 67.

    Ivy JH, Svec M, Freeman S. Уровни свободной плазмы и экскреция восемнадцати аминокислот с мочой у здоровых собак и собак с диабетом. Am J Phys.1951; 167: 182–92.

    CAS Google Scholar

  • 68.

    Borghi L, Lugari R, Montanari A, Dall’Argine P, Elia GF, Nicolotti V, et al. Свободные аминокислоты в плазме и скелетных мышцах у пациентов с диабетом типа I, леченных инсулином. Сахарный диабет. 1985; 34: 812–5.

    CAS PubMed Статья Google Scholar

  • 69.

    Родригес Т., Альварес Б., Бускетс С., Карбо Н., Лопес-Сориано Ф. Дж., Аргилес Дж. М..Повышенный обмен белков в скелетных мышцах крыс, страдающих стрептозотоциновым диабетом, связан с высокими концентрациями аминокислот с разветвленной цепью. Biochem Mol Med. 1997. 61: 87–94.

    PubMed Статья Google Scholar

  • 70.

    Йенсен-Варн М., Андерссон М., Круз Р., Нильссон Б., Ларссон Р., Корсгрен О., Эссен-Густавссон Б. Эффекты индуцированного стрептозотоцином диабета у домашних свиней с акцентом на метаболизм аминокислот. Lab Anim.2009. 43: 249–54.

    CAS PubMed Статья Google Scholar

  • 71.

    Hutson SM, Harper AE. Концентрации аминокислот с разветвленной цепью и альфа-кетокислот в крови и тканях: влияние диеты, голодания и болезней. Am J Clin Nutr. 1981; 34: 173–83.

    CAS PubMed Статья Google Scholar

  • 72.

    Гибсон Р., Чжао Ю., Яскевич Дж., Файнберг С.Е., Харрис Р.А.Влияние диабета на активность и содержание комплекса альфа-кетокислоты дегидрогеназы с разветвленной цепью в печени. Arch Biochem Biophys. 1993; 306: 22–8.

    CAS PubMed Статья Google Scholar

  • 73.

    Афтринг Р.П., Миллер В.Дж., Бузе М.Г. Влияние диабета и голодания на активность альфа-кетокислоты дегидрогеназы с разветвленной цепью скелетных мышц. Am J Phys. 1988; 254: E292–300.

    CAS Google Scholar

  • 74.

    Фелиг П., Варен Дж., Шервин Р., Палаиологос Г. Аминокислотный и белковый метаболизм при сахарном диабете. Arch Intern Med. 1977; 137: 507–13.

    CAS PubMed Статья Google Scholar

  • 75.

    Карлстен А., Халльгрен Б., Ягенбург Р., Сванборг А., Веркё Л. Аминокислоты и свободные жирные кислоты в плазме при диабете. I. Влияние инсулина на артериальный уровень. Acta Med Scand. 1966; 179: 361–70.

    CAS PubMed Статья Google Scholar

  • 76.

    Ше П., Ван Хорн С., Рид Т., Хатсон С.М., Куни Р.Н., Линч С.Дж. Повышение лейцина в плазме, связанное с ожирением, связано с изменениями ферментов, участвующих в метаболизме аминокислот с разветвленной цепью. Am J Physiol Endocrinol Metab. 2007; 293: E1552–63.

    CAS PubMed PubMed Central Статья Google Scholar

  • 77.

    Кузуя Т., Катано Ю., Накано И., Хироока Ю., Ито А., Исигами М. и др. Регулирование катаболизма аминокислот с разветвленной цепью на моделях спонтанного сахарного диабета 2 типа на крысах.Biochem Biophys Res Commun. 2008; 373: 94–8.

    CAS PubMed Статья Google Scholar

  • 78.

    Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Профили метаболитов и риск развития диабета. Nat Med. 2011; 17: 448–53.

    PubMed PubMed Central Статья CAS Google Scholar

  • 79.

    Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al.Метаболическая характеристика, связанная с аминокислотами с разветвленной цепью, которая отличает людей с ожирением от худощавых и способствует развитию инсулинорезистентности. Cell Metab. 2009; 9: 311–26.

    CAS PubMed PubMed Central Статья Google Scholar

  • 80.

    Macotela Y, Emanuelli B, Bång AM, Espinoza DO, Boucher J, Beebe K, et al. Пищевой лейцин — экологический модификатор инсулинорезистентности, действующий на нескольких уровнях метаболизма. PLoS One.2011; 6: e21187.

    CAS PubMed PubMed Central Статья Google Scholar

  • 81.

    Hinault C, Mothe-Satney I, Gautier N, Lawrence JC Jr, Van Obberghen E. Аминокислоты и лейцин позволяют инсулину активировать путь PKB / mTOR в нормальных адипоцитах, обработанных вортманнином, и в адипоцитах из db / db мышей. FASEB J. 2004; 18: 1894–6.

    CAS PubMed Статья Google Scholar

  • 82.

    Аракава М., Масаки Т., Нисимура Дж., Сейке М., Йошимацу Х. Влияние гранул аминокислот с разветвленной цепью на накопление тканевых триглицеридов и разобщение белков у мышей с ожирением, вызванным диетой. Эндокр Дж. 2011; 58: 161–70.

    CAS PubMed Статья Google Scholar

  • 83.

    Scaini G, Jeremias IC, Morais MO, Borges GD, Munhoz BP, Leffa DD, et al. Повреждение ДНК на животной модели болезни мочи кленового сиропа. Mol Genet Metab.2012; 106: 169–74.

    CAS PubMed Статья Google Scholar

  • 84.

    Касперек Г.Дж., Дом Г.Л., Снайдер Р.Д. Активация дегидрогеназы кетокислот с разветвленной цепью физическими упражнениями. Am J Phys. 1985; 248: R166–71.

    CAS Google Scholar

  • 85.

    dos Santos RV, Caperuto EC, de Mello MT, Batista ML Jr, Rosa LF. Влияние упражнений на синтез и транспорт глутамина в скелетных мышцах крыс.Clin Exp Pharmacol Physiol. 2009; 36: 770–5.

    CAS PubMed Статья Google Scholar

  • 86.

    Shimomura Y, Fujii H, Suzuki M, Murakami T., Fujitsuka N, Nakai N. Комплекс альфа-кетокислот дегидрогеназы с разветвленной цепью в скелетных мышцах крыс: регулирование активности и экспрессии генов с помощью питания и физических упражнений . J Nutr. 1995; 125: 1762S – 5S.

    CAS PubMed Google Scholar

  • 87.

    Poortmans JR, Siest G, Galteau MM, Houot O. Распределение аминокислот в плазме у людей во время субмаксимальных длительных упражнений. Eur J Appl Physiol Occup Physiol. 1974. 32: 143–147.

    CAS PubMed Статья Google Scholar

  • 88.

    Refsum HE, Gjessing LR, Strømme SB. Изменения в распределении аминокислот в плазме и экскреции аминокислот с мочой при длительных тяжелых физических нагрузках. Сканд Дж. Клин Лаб Инвест. 1979; 39: 407–13.

    CAS PubMed Статья Google Scholar

  • 89.

    Альборг Г., Фелиг П., Хагенфельдт Л., Хендлер Р., Варен Дж. Обмен субстрата во время длительных физических упражнений у человека. Спланхнический и ножной метаболизм глюкозы, свободных жирных кислот и аминокислот. J Clin Invest. 1974; 53: 1080–90.

    CAS PubMed PubMed Central Статья Google Scholar

  • 90.

    Шимомура Ю., Мураками Т., Накай Н., Нагасаки М., Харрис Р.А. Упражнения способствуют катаболизму BCAA: влияние добавок BCAA на скелетные мышцы во время упражнений.J Nutr. 2004; 134: 1583С – 7С.

    CAS PubMed Статья Google Scholar

  • 91.

    Spillane M, Emerson C, Willoughby DS. Влияние 8-недельных тренировок с отягощениями и добавок аминокислот с разветвленной цепью на композицию тела и работоспособность мышц. Nutr Health. 2012; 21: 263–73.

    CAS PubMed Статья Google Scholar

  • 92.

    Уотсон П., Ширреффс С.М., Моган Р.Дж.Влияние однократного приема аминокислот с разветвленной цепью на длительную переносимость физических нагрузок в теплой среде. Eur J Appl Physiol. 2004; 93: 306–14.

    CAS PubMed Статья Google Scholar

  • 93.

    Falavigna G, de Araújo AJ, Rogero MM, Pires IS, Pedrosa RG, Martins E, et al. Влияние диет, дополненных аминокислотами с разветвленной цепью, на работоспособность и механизмы утомления крыс, подвергшихся длительным физическим нагрузкам.Питательные вещества. 2012; 4: 1767–80.

    CAS PubMed PubMed Central Статья Google Scholar

  • 94.

    Nawabi MD, Block KP, Chakrabarti MC, Buse MG. Введение крысам эндотоксина, фактора некроза опухоли или интерлейкина 1 активирует дегидрогеназу α-кетокислоты скелетных мышц с разветвленной цепью. J Clin Invest. 1990; 85: 256–63.

    CAS PubMed PubMed Central Статья Google Scholar

  • 95.

    Фюрст П., Альберс С., Стеле П. Стресс-индуцированное внутриклеточное истощение глютамина. Возможное использование глутаминсодержащих пептидов в парентеральном питании. Beitr Infusionther Klin Ernahr. 1987. 17: 117–36.

    PubMed Google Scholar

  • 96.

    Харди Дж., Харди И.Дж. Может ли глютамин помочь тяжелобольным лучше справиться с инфекцией? JPEN J Parenter Enteral Nutr. 2008. 32: 489–91.

    PubMed Статья Google Scholar

  • 97.

    Holecek M, Sispera L. Дефицит глутамина во внеклеточной жидкости оказывает неблагоприятное воздействие на метаболизм белков и аминокислот в скелетных мышцах здоровых, лапаротомированных крыс и крыс с сепсисом. Аминокислоты. 2014; 46: 1377–84.

    CAS PubMed Статья Google Scholar

  • 98.

    Hasselgren PO, Pedersen P, Sax HC, Warner BW, Fischer JE. Современные концепции белкового обмена и транспорта аминокислот в печени и скелетных мышцах во время сепсиса.Arch Surg. 1988; 123: 992–9.

    CAS PubMed Статья Google Scholar

  • 99.

    Гардинер К., Барбул А. Абсорбция аминокислот в кишечнике во время сепсиса. JPEN J Parenter Enteral Nutr. 1993; 17: 277–83.

    CAS PubMed Статья Google Scholar

  • 100.

    Bower RH, Kern KA, Fischer JE. Использование раствора, обогащенного аминокислотами с разветвленной цепью, у пациентов с метаболическим стрессом.Am J Surg. 1985; 149: 266–70.

    CAS PubMed Статья Google Scholar

  • 101.

    Oki JC, Cuddy PG. Аминокислотная поддержка с разветвленной цепью у пациентов, находящихся в стрессе. DICP. 1989. 23: 399–410.

    CAS PubMed Статья Google Scholar

  • 102.

    Хименес Хименес Ф. Дж., Ортис Лейба С., Моралес Менедес С., Баррос Перес М., Муньос Г. Дж. Проспективное исследование эффективности аминокислот с разветвленной цепью у пациентов с сепсисом.J Parenter Enter Nutr. 1991; 15: 252–61.

    Артикул Google Scholar

  • 103.

    De Bandt JP, Cynober L. Терапевтическое использование аминокислот с разветвленной цепью при ожогах, травмах и сепсисе. J Nutr. 2006; 136: 308С – 13С.

    CAS PubMed Статья Google Scholar

  • 104.

    Platell C, Kong SE, McCauley R, Hall JC. Аминокислоты с разветвленной цепью. J Gastroenterol Hepatol.2000; 15: 706–17.

    CAS PubMed Статья Google Scholar

  • 105.

    Mattick JSA, Kamisoglu K, Ierapetritou MG, Androulakis IP, Berthiaume F. Добавки аминокислот с разветвленной цепью: влияние на передачу сигналов и актуальность для критических заболеваний. Wiley Interdiscip Rev Syst Biol Med. 2013; 5: 449–60.

    CAS PubMed PubMed Central Статья Google Scholar

  • 106.

    Lang CH, Frost RA. Эндотоксин нарушает лейцин-сигнальный путь, включающий фосфорилирование mTOR, 4E-BP1 и S6K1 в скелетных мышцах. J. Cell Physiol. 2005. 203: 144–55.

    CAS PubMed Статья Google Scholar

  • 107.

    Коул Дж. Т., Митала С. М., Кунду С., Верма А., Элкинд Дж. А., Ниссим И., Коэн А. С.. Пищевые аминокислоты с разветвленной цепью улучшают когнитивные нарушения, вызванные травмами. Proc Natl Acad Sci U S. A. 2010; 107: 366–71.

    CAS PubMed Статья Google Scholar

  • 108.

    Jeter CB, Hergenroeder GW, Ward NH, Moore AN, Dash PK. Легкая черепно-мозговая травма у человека снижает уровень циркулирующих аминокислот с разветвленной цепью и их метаболитов. J Neurotrauma. 2013; 30: 671–9.

    PubMed Статья Google Scholar

  • 109.

    Аквилани Р., Иадарола П., Контарди А., Боселли М., Верри М., Пасторис О. и др.Аминокислоты с разветвленной цепью улучшают когнитивное восстановление пациентов с тяжелой черепно-мозговой травмой. Arch Phys Med Rehabil. 2005; 86: 1729–35.

    PubMed Статья Google Scholar

  • 110.

    Баракос В.Е., Маккензи М.Л. Исследования аминокислот с разветвленной цепью и их метаболитов на животных моделях рака. J Nutr. 2006; 136: 237С – 42С.

    CAS PubMed Статья Google Scholar

  • 111.

    Ананьева Э.А., Уилкинсон АС. Метаболизм аминокислот с разветвленной цепью при раке. Curr Opin Clin Nutr Metab Care. 2018; 21: 64–70.

    CAS PubMed Статья Google Scholar

  • 112.

    Choudry HA, Pan M, Karinch AM, Souba WW. Нутритивная поддержка, обогащенная аминокислотами с разветвленной цепью, у хирургических и онкологических пациентов. J Nutr. 2006; 136: 314С – 8С.

    CAS PubMed Статья Google Scholar

  • Аминокислоты с разветвленной цепью и синтез мышечного белка у человека: миф или реальность?

    Реферат

    Аминокислоты с разветвленной цепью (BCAA) — это лейцин, валин и изолейцин.Индустрия пищевых добавок с доходом в несколько миллионов долларов выросла на основе концепции, согласно которой пищевые добавки с разветвленными цепями вызывают анаболический ответ у людей, вызванный стимуляцией синтеза мышечного белка. В этом кратком обзоре обсуждаются теоретические и эмпирические основы этого утверждения. Теоретически максимальная стимуляция синтеза мышечного белка в постабсорбционном состоянии в ответ только на BCAA — это разница между распадом мышечного белка и синтезом мышечного белка (примерно на 30% больше, чем синтез), потому что другие EAA необходимы для синтеза нового белка. может быть получено только в результате распада мышечного белка.На самом деле максимальное увеличение синтеза мышечного белка на 30% является завышенной оценкой, потому что обязательное окисление EAA никогда не может быть полностью подавлено. Обширный поиск литературы не выявил исследований на людях, в которых была бы количественно оценена реакция синтеза мышечного белка на перорально введенные только BCAA, и только два исследования, в которых оценивался эффект только внутривенно введенных BCAA. Оба этих исследования внутривенных инфузий показали, что BCAA снижают синтез мышечного белка, а также его распад, что означает снижение оборота мышечного белка.Катаболическое состояние, при котором скорость распада мышечного белка превышала скорость синтеза мышечного белка, сохранялось во время инфузии BCAA. Мы пришли к выводу, что утверждение о том, что потребление пищевых продуктов с разветвленной цепью стимулирует синтез мышечного белка или вызывает анаболический ответ у людей, является необоснованным.

    Ключевые слова: лейцин, валин, изолейцин, люди, анаболический ответ

    Общие сведения

    Всего мышечный белок состоит из двадцати аминокислот.Девять из двадцати считаются незаменимыми аминокислотами (EAA), что означает, что они не могут вырабатываться организмом в физиологически значимых количествах и, следовательно, являются важными компонентами сбалансированной диеты. Мышечный белок находится в постоянном состоянии обмена, что означает, что синтез белка происходит непрерывно, чтобы заменить белок, потерянный в результате распада белка. Для синтеза нового мышечного белка все EAA вместе с одиннадцатью незаменимыми аминокислотами (NEAA), которые могут вырабатываться в организме, должны присутствовать в адекватных количествах.Аминокислоты с разветвленной цепью лейцин, изолейцин и валин являются тремя из девяти EAA. Лейцин является не только предшественником синтеза мышечного белка, но также может играть роль регулятора внутриклеточных сигнальных путей, которые участвуют в процессе синтеза белка (например, [1]).

    Идея о том, что BCAA могут обладать уникальной способностью стимулировать синтез мышечного белка, выдвигалась более 35 лет. Данные, подтверждающие эту гипотезу, были получены при изучении ответов крыс.В 1981 г. Бузе [2] сообщил, что у крыс BCAA могут ограничивать скорость синтеза мышечного белка. Дополнительные исследования подтвердили концепцию уникального эффекта BCAA на синтез мышечного белка у крыс, хотя лишь немногие изучали реакцию на пероральное употребление только BCAA. Гарлик и Грант показали, что введение смеси BCAA крысам увеличивает скорость синтеза мышечного белка в ответ на инсулин [3], но они не измеряли эффекты только BCAA. Введение крысам только BCAA Kobayashi et al.[4], как было показано, вызывает увеличение синтеза мышечного белка, но ответ был временным. Предположительно скорость синтеза быстро стала ограничиваться доступностью других EAA.

    Исследования синтеза мышечного белка у крыс имеют ограниченное отношение к реакции человека. Скелетные мышцы составляют гораздо меньший процент от общей массы тела у крыс по сравнению с людьми, и регулирование синтеза мышечного белка во многих отношениях отличается. Так, в своей знаменательной книге по метаболизму белков Уотерлоу и его коллеги на основании имеющихся данных пришли к выводу, что пищевые аминокислоты не стимулируют синтез мышечного белка у крыс [5].Хотя недавняя работа ставит под сомнение это утверждение, ограниченный стимулирующий эффект пищевых аминокислот на синтез белка у крыс отражает тот факт, что в нормальных постабсорбтивных условиях имеются избыточные эндогенные аминокислоты, позволяющие увеличить синтез белка, если активность внутриклеточных факторы, участвующие в инициации синтеза белка, стимулируются. Выражаясь по-другому, синтез мышечного белка у крысы, по-видимому, ограничивается скорее процессом инициации, чем процессом трансляции.Напротив, как будет описано ниже, у людей этого не происходит. Еще одно важное различие между исследованиями, изучающими влияние аминокислот на синтез мышечного белка у людей и крыс, связано с обычно используемыми методологиями. В исследованиях на крысах обычно использовался метод «доза затопления» [6]. Эта процедура включает измерение включения индикатора аминокислот в мышечный белок в течение очень короткого промежутка времени, часто всего 10 минут. Этот подход не делает различий между кратковременной и устойчивой стимуляцией синтеза белка.Физиологически значима только длительная стимуляция синтеза. Потребление несбалансированной смеси аминокислот, такой как BCAA, может временно стимулировать синтез белка за счет использования эндогенных запасов других предшественников синтеза белка. Однако эндогенные запасы аминокислот, например, в плазме и свободных внутриклеточных пулах, весьма ограничены и могут быстро истощиться. Если стимуляция синтеза белка не может быть продолжена, это не имеет большого физиологического значения.Следовательно, метод дозирования наводнения, обычно используемый для измерения синтеза мышечного белка у крыс, дает результаты с неопределенным отношением к питанию человека. Поскольку пищевые добавки BCAA предназначены для употребления в пищу человеком, в центре внимания этого краткого обзора будут исследования на людях.

    Продажа BCAA в качестве пищевых добавок превратилась в бизнес с многомиллионным оборотом. В основе маркетинга этих продуктов лежит широко распространенное мнение о том, что потребление BCAA стимулирует синтез мышечного белка и, как следствие, вызывает анаболический ответ.BCAA также можно употреблять с целью улучшения «умственной сосредоточенности», но мы не будем рассматривать это применение. Основная цель этой статьи — оценить утверждение, что только BCAA являются анаболическими, — адекватно подтверждена теоретически или эмпирически исследованиями на людях. Неявным в нашей оценке будет исследование того, играет ли состояние фосфорилирования эукариотических факторов инициации роль регулятора скорости в регуляции синтеза мышечного белка у людей.

    Оборот мышечного белка и потребление белка с пищей

    Мышечный белок находится в постоянном состоянии оборота, что означает, что новый белок постоянно вырабатывается, в то время как старые белки расщепляются. Анаболическое состояние не имеет конкретного определения, но обычно относится к обстоятельствам, при которых скорость синтеза мышечного белка превышает скорость распада мышечного белка. Результат — набор мышечной массы. Обычно считается, что анаболическое состояние вызывается стимуляцией синтеза мышечного белка, но теоретически оно также может быть результатом ингибирования распада мышечного белка.

    Основная метаболическая цель приема добавок BCAA — максимизировать анаболическое состояние. Широко распространено мнение, что BCAA вызывают анаболическое состояние, стимулируя синтез мышечного белка. Обильная доступность всех EAA является необходимым условием для значительной стимуляции синтеза мышечного белка [7]. Синтез мышечного белка будет ограничен из-за отсутствия каких-либо EAA, тогда как нехватка NEAA может быть компенсирована увеличением de novo продукции дефицитных NEAA [7].В постпрандиальном состоянии после приема пищи, содержащей белок, все предшественники EAA, необходимые для синтеза нового мышечного белка, могут быть получены либо из повышенных концентраций в плазме, возникающих в результате переваривания потребленного белка, либо в результате его рециркуляции в результате распада белка. В этом случае обильной доступности EAA скорость синтеза мышечного белка превышает скорость распада, что приводит к анаболическому состоянию. В постабсорбтивном состоянии уровни EAA в плазме падают ниже постпрандиальных значений, потому что аминокислоты больше не всасываются.В результате EAA больше не поглощаются мышцами, а высвобождаются мышцами в плазму [8]. Это катаболическое состояние мышечного белка в постабсорбционном состоянии обеспечивает постоянную доступность EAA для других тканей для поддержания скорости синтеза белка за счет мышечного белка, который можно рассматривать как резервуар EAA для остальных. тела, чтобы опираться.

    Так как EAA не могут продуцироваться в организме и есть чистое высвобождение EAA из мышц, в постабсорбционном состоянии единственным источником предшественников EAA для синтеза мышечного белка являются внутриклеточные EAA, полученные в результате распада мышечного белка [8].Помимо того, что они повторно включаются в мышечный белок посредством синтеза, некоторые EAA, высвобождаемые в результате распада мышечного белка, могут частично окисляться в мышцах, что делает их недоступными для повторного включения в мышечный белок. EAA, высвобождаемые в результате распада мышечного белка, которые не включаются в мышечный белок или не окисляются в мышечной ткани, высвобождаются в плазму, после чего они могут либо поглощаться другими тканями в качестве предшественников для синтеза белка, либо необратимо окисляться [9].Таким образом, скорость синтеза мышечного белка всегда будет ниже, чем скорость распада мышечного белка в состоянии после абсорбции, из-за чистого потока EAA от распада белка в плазму и по окислительным путям. Другими словами, синтез мышечного белка не может превысить скорость распада мышечного белка, когда предшественники полностью получены из распада белка, и, таким образом, анаболическое состояние не может возникнуть в отсутствие потребления экзогенных аминокислот.

    Являются ли BCAA анаболическими в состоянии после абсорбции?

    Теоретические соображения

    Все предшественники EAA для синтеза мышечного белка в постабсорбирующем состоянии являются производными от распада мышечного белка.Постоянно сообщалось, что у нормальных людей после абсорбции скорость распада мышечного белка превышает скорость синтеза мышечного белка примерно на 30% [10]. Потребление только BCAA (то есть без других EAA) может только увеличить синтез мышечного белка в состоянии после абсорбции за счет повышения эффективности рециркуляции EAA из расщепления белка обратно в синтез белка, в отличие от их высвобождения в плазму или окисленный. Это связано с тем, что все 9 EAA (а также 11 NEAA) необходимы для производства мышечного белка, а EAA не могут производиться в организме.Если потребляются только 3 EAA, как в случае с BCAA, то распад белка является единственным источником оставшихся EAA, необходимых в качестве предшественников для синтеза мышечного белка. Следовательно, потребление только BCAA теоретически невозможно для создания анаболического состояния, при котором синтез мышечного белка превышает распад мышечного белка. Если сделать щедрое предположение, что потребление BCAA повышает эффективность рециркуляции EAA от распада мышечного белка до синтеза мышечного белка на 50%, то это приведет к увеличению скорости синтеза мышечного белка на 15% (30% рециркулируется в базовом режиме). состояние X 50% улучшение рециркуляции = 15% увеличение синтеза).Кроме того, снижение на 50% высвобождения ЕАА в плазму из мышц также уменьшило бы плазменный и внутриклеточный пулы свободных ЕАА. Рисунок схематично иллюстрирует эти принципы. Поскольку повышение эффективности рециркуляции на 50% будет примерно разумным максимальным пределом, это означает, что максимальная стимуляция синтеза мышечного белка не может превышать 15%. Это соответствовало бы увеличению фракционной скорости синтеза мышцы от базального значения около 0,050% / ч в базальном состоянии до 0.057% / час, и эту разницу во фракционной скорости синтеза (FSR) белка будет трудно точно измерить [11].

    Схематическое изображение рециркуляции незаменимых аминокислот (EAA) из распада мышечного белка в синтез мышечного белка в постабсорбционном состоянии. Произвольные единицы используются для простоты и основаны на измеренных скоростях каждого пути у людей после абсорбции [10]. a Нормальное состояние после абсорбции. Примерно 70% EAA, образующихся при распаде мышечного белка, перерабатываются в синтез белка [10].В результате расщепления белка происходит чистый отток примерно 85% EAA, которые могут либо поглощаться и включаться в белок в других тканях, либо окисляться. Около 15% EAA от распада белка частично окисляются в мышцах и недоступны для синтеза белка. Показатели внешнего потока и внутриклеточного окисления ЕАА являются средними, поскольку некоторые ЕАА, такие как фенилаланин, совсем не окисляются в мышцах. b Представление 50% увеличения эффективности рециркуляции EAA от распада мышечного белка до синтеза белка.В этом примере синтез увеличится с 70 до 80 единиц, или на 20%. Синтез белка никогда не может превышать распад белка в постабсорбционном состоянии, поскольку расщепление белка является единственным источником EAA

    Эмпирические результаты

    BCAA вводили внутривенно в единственных исследованиях, определяющих реакцию метаболизма мышечных белков у людей на BCAA один. Хотя введение BCAA не является общепринятым способом употребления пищевой добавки, было показано, что вводимые внутривенно и перорально аминокислоты вызывают сопоставимые эффекты на синтез мышечного белка в других случаях [12].Следовательно, есть смысл оценить статьи, в которых описывается реакция синтеза мышечного белка на внутривенное вливание BCAA у людей.

    Louard et al. [13] использовали метод баланса предплечий для количественной оценки реакции на внутривенное вливание смеси BCAA в течение 3 часов у 10 субъектов после абсорбции. Метод баланса предплечья включает измерение поглощения и высвобождения индивидуальных EAA (в данном случае лейцина и фенилаланина) и их изотопно-меченных аналогов.Рассчитаны скорости исчезновения (Rd) и появления (Ra) фенилаланина и лейцина. Исходя из предположения, что баланс лейцина и фенилаланина в мышцах является репрезентативным для всех EAA, Rd. Считается, что фенилаланин отражает синтез мышечного белка, поскольку синтез белка — единственная судьба фенилаланина, поглощаемого мышцами из плазмы. Rd. лейцина нельзя интерпретировать с точки зрения синтеза белка, поскольку лейцин, поглощаемый мышцами, может окисляться, а также включаться в белок.Трехчасовая инфузия BCAA увеличила плазменные концентрации всех 3 BCAA в четыре раза, в то время как концентрации других EAA снизились [13]. Синтез мышечного белка снизился с 37 +/- 3 до 21 +/- 2 нмоль / мин / 100 мл ноги (статистически значимо, p <0,05) [13], вместо того, чтобы стимулироваться инфузией BCAA. Не было значительных изменений в чистом балансе фенилаланина, что указывает на то, что распад мышечного белка также уменьшился на величину, аналогичную сокращению синтеза мышечного белка.Баланс между синтезом и распадом мышечного белка оставался отрицательным, что означало, что катаболическое состояние сохранялось, а анаболическое состояние не возникало. Одновременное снижение синтеза и распада мышечного белка во время инфузии BCAA можно охарактеризовать как снижение оборота мышечного белка.

    Аналогичные результаты были получены теми же исследователями, когда они увеличили продолжительность инфузии BCAA до 16 часов у 8 нормальных добровольцев и определили, стимулирует ли хроническое повышение BCAA синтез мышечного белка [14].Для расчета синтеза и распада мышечного белка использовалась та же методика баланса предплечий, что и в предыдущем исследовании. 16-часовая инфузия увеличивает концентрацию BCAA от 5 до 8 раз [14], что почти вдвое превышает уровни, достигаемые при пероральном приеме нормальной дозы BCAA [15]. Как и в предыдущем исследовании, синтез мышечного белка (отраженный фенилаланином Rd) был снижен у субъектов, получавших BCAA, по сравнению с инфузией физиологического раствора с 36 +/- 5 до 27 +/- 2 нмоль / мин / 100 мл. также снизился, а это означает, что оборот мышечного белка также снизился, и катаболическое состояние сохранялось.

    Из этих двух исследований можно сделать вывод, что инфузия BCAA не только не увеличивает скорость синтеза мышечного белка у людей, но фактически снижает скорость синтеза мышечного белка и скорость обмена мышечного белка. Катаболическое состояние не было обращено в анаболическое состояние ни в одном исследовании. Кроме того, можно ожидать, что устойчивое снижение скорости оборота мышечного белка будет иметь пагубный эффект на мышечную силу, даже если мышечная масса сохраняется. Оборот мышечного белка обновляет мышечные волокна и приводит к увеличению эффективности сокращения на уровне отдельных волокон [16], что отражается в увеличении силы in vivo, независимо от мышечной массы [17, 18].

    Неспособность синтеза мышечного белка значительно увеличиться в ответ на инфузию только BCAA, как и ожидалось, в соответствии с теоретическими соображениями, обсужденными выше и проиллюстрированными на рис., В отношении требования для всех EAA поддерживать увеличение. Вместо этого, поскольку распад мышечного белка уменьшился, доступность EAA также упала, что, в свою очередь, фактически снизило скорость синтеза мышечного белка.

    Ограничивают ли анаболические сигнальные факторы скорость в постабсорбционном состоянии?

    Утверждение о том, что синтез мышечного белка стимулируется BCAA, по крайней мере частично, связано с наблюдением усиления внутриклеточной анаболической передачи сигналов, включая состояние активации ключевых факторов, участвующих в инициации синтеза белка [1].Теория о том, что активация внутриклеточных анаболических сигнальных факторов вызывает повышенную скорость синтеза мышечного белка, прочно вошла в современные концепции регуляции синтеза мышечного белка. Повышенная анаболическая передача сигналов в ответ на BCAA была приведена в качестве доказательства стимуляции синтеза мышечного белка даже в отсутствие измерения синтеза мышечного белка (например, [1]). Однако активация анаболических сигнальных путей может совпадать с повышенным синтезом мышечного белка только при наличии достаточного количества EAA, обеспечивающего необходимые предшественники для производства полноценного белка.

    Диссоциация состояния фосфорилирования сигнальных факторов и синтеза мышечного белка у людей была показана в различных обстоятельствах, когда доступность всех EAA ограничена. Например, повышение концентрации инсулина (например, в результате приема глюкозы) является мощным активатором анаболических сигнальных путей, но это не может увеличить мышечный FSR из-за дефицита EAA [19]. И наоборот, потребление небольшого количества (3 г) EAA стимулирует синтез мышечного белка, не влияя на активность фактора инициации e.g., Akt, киназа S6 и 4E – BP1 [20]. Небольшое увеличение концентрации ЕАА в плазме не имело бы никакого эффекта, если бы синтез белка ограничивался состоянием активации факторов инициации. В упомянутых выше исследованиях, в которых BCAA вводили внутривенно, разумно предположить, что такое большое увеличение концентрации BCAA могло бы активировать сигнальные факторы, однако синтез мышечного белка фактически снизился из-за отсутствия EAA в результате снижения расщепление белков.Таким образом, у людей введение ЕАА может увеличить синтез мышечного белка при отсутствии каких-либо изменений в активации факторов инициации, а активация факторов инициации при отсутствии потребления всех ЕАА не влияет на синтез мышечного белка. Эти результаты можно интерпретировать только как демонстрацию того, что ограничивающий скорость контроль синтеза белка базальных мышц у людей — это доступность всех EAA, а не активность анаболического сигнального фактора. Этот вывод ставит под сомнение роль пищевых добавок, содержащих только BCAA, как стимуляторов синтеза мышечного белка.

    Когда все доказательства и теории рассматриваются вместе, можно сделать вывод об отсутствии достоверных доказательств того, что прием одной только пищевой добавки с BCAA приводит к физиологически значимой стимуляции мышечного белка. Фактически, имеющиеся данные указывают на то, что BCAA действительно снижают синтез мышечного белка. Все EAA должны быть доступны в изобилии, чтобы усиление анаболической передачи сигналов приводило к ускоренному синтезу мышечного белка.

    Одновременное употребление BCAA с другими питательными веществами

    В центре внимания этого обзора была реакция на только BCAA, поскольку это логическая цель пищевых добавок BCAA.Как и в случае потребления только BCAA, существует ограниченное количество исследований совместного приема BCAA с другими питательными веществами. Когда BCAA или изоазотная смесь треонина, метионина и гистидина вводились людям вместе с углеводами, скорость синтеза мышечного белка снижалась одинаково в обеих группах, что указывает на отсутствие уникальной роли BCAA [21]. Точно так же потребление смеси BCAA с углеводами после упражнений с отягощениями не увеличивало анаболические сигнальные факторы в большей степени, чем одни углеводы [22].Таким образом, имеющиеся данные не поддерживают идею об особом анаболическом эффекте BCAA при приеме с углеводами.

    В отличие от отсутствия взаимодействия между BCAA и углеводами, BCAA могут усиливать анаболический эффект белковой пищи. Например, добавление 5 г BCAA к напитку, содержащему 6,25 г сывороточного протеина, увеличивало синтез мышечного протеина до уровня, сопоставимого с уровнем, вызываемым 25 г сывороточного протеина [23]. Этот результат предполагает, что один или несколько BCAA могут ограничивать скорость стимуляции синтеза мышечного белка сывороточным белком или что дополнительные BCAA индуцируют больший потенциал анаболического ответа мышц на сывороточный белок за счет активации факторов инициации.В любом случае реакция BCAA в сочетании с интактным белком — это другая проблема, чем эффект только BCAA, поскольку интактный белок обеспечивает все EAA, необходимые для производства интактного белка.

    Индивидуальные эффекты лейцина, валина и изолейцина

    В этой статье мы рассмотрели только реакцию на смеси BCAA. Ответы на отдельные BCAA (например, лейцин, валин или изолейцин) могут отличаться от комбинации этих трех по нескольким причинам.Доказательства указывают на то, что лейцин сам по себе может вызывать анаболический ответ (например, [24]), в то время как таких данных не существует для изолейцина или валина. Таким образом, можно было ожидать, что один лейцин будет более эффективным, чем комбинация всех BCAA. Однако есть два существенных ограничения пищевой добавки, содержащей только лейцин. Во-первых, те же проблемы, которые ограничивают степень стимуляции синтеза мышечного белка только BCAA в отношении доступности других EAA, необходимых для производства неповрежденного мышечного белка, также ограничивают ответ только на лейцин.Во-вторых, повышение концентрации лейцина в плазме активирует метаболический путь, который окисляет все BCAA. В результате прием одного лейцина приводит к снижению плазменных концентраций валина и изолейцина. Таким образом, доступность валина и изолейцина может стать ограничивающей для синтеза мышечного белка, когда потребляется только лейцин. Возможно, поэтому долгосрочные исследования результатов с добавлением лейцина в рацион не дали положительных результатов [25].Основное обоснование для диетической добавки, содержащей все BCAA, а не только лейцина, состоит в том, чтобы преодолеть снижение концентраций валина и изолейцина в плазме, которое могло бы произойти при приеме только лейцина.

    В то время как пищевая добавка со всеми BCAA преодолевает снижение концентрации, вызванное потреблением только лейцина, добавление валина и изолейцина, тем не менее, может ограничивать эффективность одного лейцина из-за конкуренции за перенос в мышечные клетки.Все BCAA активно транспортируются в клетки, включая мышечные, с помощью одной и той же транспортной системы. Следовательно, при совместном использовании BCAA конкурируют друг с другом за транспортировку в клетки. Если один из BCAA (например, лейцин) ограничивает скорость синтеза белка, добавление двух других BCAA может ограничить стимуляцию синтеза белка из-за снижения проникновения лейцина в клетку. BCAA также конкурируют с другими аминокислотами за транспорт, включая фенилаланин, и эта конкуренция может повлиять на внутримышечную доступность других EAA.В результате конкуренции за переносчики, возможно, что один лейцин, например, может оказывать временное стимулирующее действие на синтез мышечного белка (например, [21]), когда BCAA не вызывают такой реакции [13, 14].

    Аминокислоты с разветвленной цепью и синтез мышечного белка у человека: миф или реальность?

    Реферат

    Аминокислоты с разветвленной цепью (BCAA) — это лейцин, валин и изолейцин. Индустрия пищевых добавок с доходом в несколько миллионов долларов выросла на основе концепции, согласно которой пищевые добавки с разветвленными цепями вызывают анаболический ответ у людей, вызванный стимуляцией синтеза мышечного белка.В этом кратком обзоре обсуждаются теоретические и эмпирические основы этого утверждения. Теоретически максимальная стимуляция синтеза мышечного белка в постабсорбционном состоянии в ответ только на BCAA — это разница между распадом мышечного белка и синтезом мышечного белка (примерно на 30% больше, чем синтез), потому что другие EAA необходимы для синтеза нового белка. может быть получено только в результате распада мышечного белка. На самом деле максимальное увеличение синтеза мышечного белка на 30% является завышенной оценкой, потому что обязательное окисление EAA никогда не может быть полностью подавлено.Обширный поиск литературы не выявил исследований на людях, в которых была бы количественно оценена реакция синтеза мышечного белка на перорально введенные только BCAA, и только два исследования, в которых оценивался эффект только внутривенно введенных BCAA. Оба этих исследования внутривенных инфузий показали, что BCAA снижают синтез мышечного белка, а также его распад, что означает снижение оборота мышечного белка. Катаболическое состояние, при котором скорость распада мышечного белка превышала скорость синтеза мышечного белка, сохранялось во время инфузии BCAA.Мы пришли к выводу, что утверждение о том, что потребление пищевых продуктов с разветвленной цепью стимулирует синтез мышечного белка или вызывает анаболический ответ у людей, является необоснованным.

    Ключевые слова: лейцин, валин, изолейцин, люди, анаболический ответ

    Общие сведения

    Всего мышечный белок состоит из двадцати аминокислот. Девять из двадцати считаются незаменимыми аминокислотами (EAA), что означает, что они не могут вырабатываться организмом в физиологически значимых количествах и, следовательно, являются важными компонентами сбалансированной диеты.Мышечный белок находится в постоянном состоянии обмена, что означает, что синтез белка происходит непрерывно, чтобы заменить белок, потерянный в результате распада белка. Для синтеза нового мышечного белка все EAA вместе с одиннадцатью незаменимыми аминокислотами (NEAA), которые могут вырабатываться в организме, должны присутствовать в адекватных количествах. Аминокислоты с разветвленной цепью лейцин, изолейцин и валин являются тремя из девяти EAA. Лейцин является не только предшественником синтеза мышечного белка, но также может играть роль регулятора внутриклеточных сигнальных путей, которые участвуют в процессе синтеза белка (например,г., [1]).

    Идея о том, что BCAA могут обладать уникальной способностью стимулировать синтез мышечного белка, выдвигалась более 35 лет. Данные, подтверждающие эту гипотезу, были получены при изучении ответов крыс. В 1981 г. Бузе [2] сообщил, что у крыс BCAA могут ограничивать скорость синтеза мышечного белка. Дополнительные исследования подтвердили концепцию уникального эффекта BCAA на синтез мышечного белка у крыс, хотя лишь немногие изучали реакцию на пероральное употребление только BCAA.Гарлик и Грант показали, что введение смеси BCAA крысам увеличивает скорость синтеза мышечного белка в ответ на инсулин [3], но они не измеряли эффекты только BCAA. Введение крысам только BCAA Kobayashi et al. [4], как было показано, вызывает увеличение синтеза мышечного белка, но ответ был временным. Предположительно скорость синтеза быстро стала ограничиваться доступностью других EAA.

    Исследования синтеза мышечного белка у крыс имеют ограниченное отношение к реакции человека.Скелетные мышцы составляют гораздо меньший процент от общей массы тела у крыс по сравнению с людьми, и регулирование синтеза мышечного белка во многих отношениях отличается. Так, в своей знаменательной книге по метаболизму белков Уотерлоу и его коллеги на основании имеющихся данных пришли к выводу, что пищевые аминокислоты не стимулируют синтез мышечного белка у крыс [5]. Хотя недавняя работа ставит под сомнение это утверждение, ограниченный стимулирующий эффект пищевых аминокислот на синтез белка у крыс отражает тот факт, что в нормальных постабсорбтивных условиях имеются избыточные эндогенные аминокислоты, позволяющие увеличить синтез белка, если активность внутриклеточных факторы, участвующие в инициации синтеза белка, стимулируются.Выражаясь по-другому, синтез мышечного белка у крысы, по-видимому, ограничивается скорее процессом инициации, чем процессом трансляции. Напротив, как будет описано ниже, у людей этого не происходит. Еще одно важное различие между исследованиями, изучающими влияние аминокислот на синтез мышечного белка у людей и крыс, связано с обычно используемыми методологиями. В исследованиях на крысах обычно использовался метод «доза затопления» [6]. Эта процедура включает измерение включения индикатора аминокислот в мышечный белок в течение очень короткого промежутка времени, часто всего 10 минут.Этот подход не делает различий между кратковременной и устойчивой стимуляцией синтеза белка. Физиологически значима только длительная стимуляция синтеза. Потребление несбалансированной смеси аминокислот, такой как BCAA, может временно стимулировать синтез белка за счет использования эндогенных запасов других предшественников синтеза белка. Однако эндогенные запасы аминокислот, например, в плазме и свободных внутриклеточных пулах, весьма ограничены и могут быстро истощиться.Если стимуляция синтеза белка не может быть продолжена, это не имеет большого физиологического значения. Следовательно, метод дозирования наводнения, обычно используемый для измерения синтеза мышечного белка у крыс, дает результаты с неопределенным отношением к питанию человека. Поскольку пищевые добавки BCAA предназначены для употребления в пищу человеком, в центре внимания этого краткого обзора будут исследования на людях.

    Продажа BCAA в качестве пищевых добавок превратилась в бизнес с многомиллионным оборотом.В основе маркетинга этих продуктов лежит широко распространенное мнение о том, что потребление BCAA стимулирует синтез мышечного белка и, как следствие, вызывает анаболический ответ. BCAA также можно употреблять с целью улучшения «умственной сосредоточенности», но мы не будем рассматривать это применение. Основная цель этой статьи — оценить утверждение, что только BCAA являются анаболическими, — адекватно подтверждена теоретически или эмпирически исследованиями на людях. Неявным в нашей оценке будет исследование того, играет ли состояние фосфорилирования эукариотических факторов инициации роль регулятора скорости в регуляции синтеза мышечного белка у людей.

    Оборот мышечного белка и потребление белка с пищей

    Мышечный белок находится в постоянном состоянии оборота, что означает, что новый белок постоянно вырабатывается, в то время как старые белки расщепляются. Анаболическое состояние не имеет конкретного определения, но обычно относится к обстоятельствам, при которых скорость синтеза мышечного белка превышает скорость распада мышечного белка. Результат — набор мышечной массы. Обычно считается, что анаболическое состояние вызывается стимуляцией синтеза мышечного белка, но теоретически оно также может быть результатом ингибирования распада мышечного белка.

    Основная метаболическая цель приема добавок BCAA — максимизировать анаболическое состояние. Широко распространено мнение, что BCAA вызывают анаболическое состояние, стимулируя синтез мышечного белка. Обильная доступность всех EAA является необходимым условием для значительной стимуляции синтеза мышечного белка [7]. Синтез мышечного белка будет ограничен из-за отсутствия каких-либо EAA, тогда как нехватка NEAA может быть компенсирована увеличением de novo продукции дефицитных NEAA [7].В постпрандиальном состоянии после приема пищи, содержащей белок, все предшественники EAA, необходимые для синтеза нового мышечного белка, могут быть получены либо из повышенных концентраций в плазме, возникающих в результате переваривания потребленного белка, либо в результате его рециркуляции в результате распада белка. В этом случае обильной доступности EAA скорость синтеза мышечного белка превышает скорость распада, что приводит к анаболическому состоянию. В постабсорбтивном состоянии уровни EAA в плазме падают ниже постпрандиальных значений, потому что аминокислоты больше не всасываются.В результате EAA больше не поглощаются мышцами, а высвобождаются мышцами в плазму [8]. Это катаболическое состояние мышечного белка в постабсорбционном состоянии обеспечивает постоянную доступность EAA для других тканей для поддержания скорости синтеза белка за счет мышечного белка, который можно рассматривать как резервуар EAA для остальных. тела, чтобы опираться.

    Так как EAA не могут продуцироваться в организме и есть чистое высвобождение EAA из мышц, в постабсорбционном состоянии единственным источником предшественников EAA для синтеза мышечного белка являются внутриклеточные EAA, полученные в результате распада мышечного белка [8].Помимо того, что они повторно включаются в мышечный белок посредством синтеза, некоторые EAA, высвобождаемые в результате распада мышечного белка, могут частично окисляться в мышцах, что делает их недоступными для повторного включения в мышечный белок. EAA, высвобождаемые в результате распада мышечного белка, которые не включаются в мышечный белок или не окисляются в мышечной ткани, высвобождаются в плазму, после чего они могут либо поглощаться другими тканями в качестве предшественников для синтеза белка, либо необратимо окисляться [9].Таким образом, скорость синтеза мышечного белка всегда будет ниже, чем скорость распада мышечного белка в состоянии после абсорбции, из-за чистого потока EAA от распада белка в плазму и по окислительным путям. Другими словами, синтез мышечного белка не может превысить скорость распада мышечного белка, когда предшественники полностью получены из распада белка, и, таким образом, анаболическое состояние не может возникнуть в отсутствие потребления экзогенных аминокислот.

    Являются ли BCAA анаболическими в состоянии после абсорбции?

    Теоретические соображения

    Все предшественники EAA для синтеза мышечного белка в постабсорбирующем состоянии являются производными от распада мышечного белка.Постоянно сообщалось, что у нормальных людей после абсорбции скорость распада мышечного белка превышает скорость синтеза мышечного белка примерно на 30% [10]. Потребление только BCAA (то есть без других EAA) может только увеличить синтез мышечного белка в состоянии после абсорбции за счет повышения эффективности рециркуляции EAA из расщепления белка обратно в синтез белка, в отличие от их высвобождения в плазму или окисленный. Это связано с тем, что все 9 EAA (а также 11 NEAA) необходимы для производства мышечного белка, а EAA не могут производиться в организме.Если потребляются только 3 EAA, как в случае с BCAA, то распад белка является единственным источником оставшихся EAA, необходимых в качестве предшественников для синтеза мышечного белка. Следовательно, потребление только BCAA теоретически невозможно для создания анаболического состояния, при котором синтез мышечного белка превышает распад мышечного белка. Если сделать щедрое предположение, что потребление BCAA повышает эффективность рециркуляции EAA от распада мышечного белка до синтеза мышечного белка на 50%, то это приведет к увеличению скорости синтеза мышечного белка на 15% (30% рециркулируется в базовом режиме). состояние X 50% улучшение рециркуляции = 15% увеличение синтеза).Кроме того, снижение на 50% высвобождения ЕАА в плазму из мышц также уменьшило бы плазменный и внутриклеточный пулы свободных ЕАА. Рисунок схематично иллюстрирует эти принципы. Поскольку повышение эффективности рециркуляции на 50% будет примерно разумным максимальным пределом, это означает, что максимальная стимуляция синтеза мышечного белка не может превышать 15%. Это соответствовало бы увеличению фракционной скорости синтеза мышцы от базального значения около 0,050% / ч в базальном состоянии до 0.057% / час, и эту разницу во фракционной скорости синтеза (FSR) белка будет трудно точно измерить [11].

    Схематическое изображение рециркуляции незаменимых аминокислот (EAA) из распада мышечного белка в синтез мышечного белка в постабсорбционном состоянии. Произвольные единицы используются для простоты и основаны на измеренных скоростях каждого пути у людей после абсорбции [10]. a Нормальное состояние после абсорбции. Примерно 70% EAA, образующихся при распаде мышечного белка, перерабатываются в синтез белка [10].В результате расщепления белка происходит чистый отток примерно 85% EAA, которые могут либо поглощаться и включаться в белок в других тканях, либо окисляться. Около 15% EAA от распада белка частично окисляются в мышцах и недоступны для синтеза белка. Показатели внешнего потока и внутриклеточного окисления ЕАА являются средними, поскольку некоторые ЕАА, такие как фенилаланин, совсем не окисляются в мышцах. b Представление 50% увеличения эффективности рециркуляции EAA от распада мышечного белка до синтеза белка.В этом примере синтез увеличится с 70 до 80 единиц, или на 20%. Синтез белка никогда не может превышать распад белка в постабсорбционном состоянии, поскольку расщепление белка является единственным источником EAA

    Эмпирические результаты

    BCAA вводили внутривенно в единственных исследованиях, определяющих реакцию метаболизма мышечных белков у людей на BCAA один. Хотя введение BCAA не является общепринятым способом употребления пищевой добавки, было показано, что вводимые внутривенно и перорально аминокислоты вызывают сопоставимые эффекты на синтез мышечного белка в других случаях [12].Следовательно, есть смысл оценить статьи, в которых описывается реакция синтеза мышечного белка на внутривенное вливание BCAA у людей.

    Louard et al. [13] использовали метод баланса предплечий для количественной оценки реакции на внутривенное вливание смеси BCAA в течение 3 часов у 10 субъектов после абсорбции. Метод баланса предплечья включает измерение поглощения и высвобождения индивидуальных EAA (в данном случае лейцина и фенилаланина) и их изотопно-меченных аналогов.Рассчитаны скорости исчезновения (Rd) и появления (Ra) фенилаланина и лейцина. Исходя из предположения, что баланс лейцина и фенилаланина в мышцах является репрезентативным для всех EAA, Rd. Считается, что фенилаланин отражает синтез мышечного белка, поскольку синтез белка — единственная судьба фенилаланина, поглощаемого мышцами из плазмы. Rd. лейцина нельзя интерпретировать с точки зрения синтеза белка, поскольку лейцин, поглощаемый мышцами, может окисляться, а также включаться в белок.Трехчасовая инфузия BCAA увеличила плазменные концентрации всех 3 BCAA в четыре раза, в то время как концентрации других EAA снизились [13]. Синтез мышечного белка снизился с 37 +/- 3 до 21 +/- 2 нмоль / мин / 100 мл ноги (статистически значимо, p <0,05) [13], вместо того, чтобы стимулироваться инфузией BCAA. Не было значительных изменений в чистом балансе фенилаланина, что указывает на то, что распад мышечного белка также уменьшился на величину, аналогичную сокращению синтеза мышечного белка.Баланс между синтезом и распадом мышечного белка оставался отрицательным, что означало, что катаболическое состояние сохранялось, а анаболическое состояние не возникало. Одновременное снижение синтеза и распада мышечного белка во время инфузии BCAA можно охарактеризовать как снижение оборота мышечного белка.

    Аналогичные результаты были получены теми же исследователями, когда они увеличили продолжительность инфузии BCAA до 16 часов у 8 нормальных добровольцев и определили, стимулирует ли хроническое повышение BCAA синтез мышечного белка [14].Для расчета синтеза и распада мышечного белка использовалась та же методика баланса предплечий, что и в предыдущем исследовании. 16-часовая инфузия увеличивает концентрацию BCAA от 5 до 8 раз [14], что почти вдвое превышает уровни, достигаемые при пероральном приеме нормальной дозы BCAA [15]. Как и в предыдущем исследовании, синтез мышечного белка (отраженный фенилаланином Rd) был снижен у субъектов, получавших BCAA, по сравнению с инфузией физиологического раствора с 36 +/- 5 до 27 +/- 2 нмоль / мин / 100 мл. также снизился, а это означает, что оборот мышечного белка также снизился, и катаболическое состояние сохранялось.

    Из этих двух исследований можно сделать вывод, что инфузия BCAA не только не увеличивает скорость синтеза мышечного белка у людей, но фактически снижает скорость синтеза мышечного белка и скорость обмена мышечного белка. Катаболическое состояние не было обращено в анаболическое состояние ни в одном исследовании. Кроме того, можно ожидать, что устойчивое снижение скорости оборота мышечного белка будет иметь пагубный эффект на мышечную силу, даже если мышечная масса сохраняется. Оборот мышечного белка обновляет мышечные волокна и приводит к увеличению эффективности сокращения на уровне отдельных волокон [16], что отражается в увеличении силы in vivo, независимо от мышечной массы [17, 18].

    Неспособность синтеза мышечного белка значительно увеличиться в ответ на инфузию только BCAA, как и ожидалось, в соответствии с теоретическими соображениями, обсужденными выше и проиллюстрированными на рис., В отношении требования для всех EAA поддерживать увеличение. Вместо этого, поскольку распад мышечного белка уменьшился, доступность EAA также упала, что, в свою очередь, фактически снизило скорость синтеза мышечного белка.

    Ограничивают ли анаболические сигнальные факторы скорость в постабсорбционном состоянии?

    Утверждение о том, что синтез мышечного белка стимулируется BCAA, по крайней мере частично, связано с наблюдением усиления внутриклеточной анаболической передачи сигналов, включая состояние активации ключевых факторов, участвующих в инициации синтеза белка [1].Теория о том, что активация внутриклеточных анаболических сигнальных факторов вызывает повышенную скорость синтеза мышечного белка, прочно вошла в современные концепции регуляции синтеза мышечного белка. Повышенная анаболическая передача сигналов в ответ на BCAA была приведена в качестве доказательства стимуляции синтеза мышечного белка даже в отсутствие измерения синтеза мышечного белка (например, [1]). Однако активация анаболических сигнальных путей может совпадать с повышенным синтезом мышечного белка только при наличии достаточного количества EAA, обеспечивающего необходимые предшественники для производства полноценного белка.

    Диссоциация состояния фосфорилирования сигнальных факторов и синтеза мышечного белка у людей была показана в различных обстоятельствах, когда доступность всех EAA ограничена. Например, повышение концентрации инсулина (например, в результате приема глюкозы) является мощным активатором анаболических сигнальных путей, но это не может увеличить мышечный FSR из-за дефицита EAA [19]. И наоборот, потребление небольшого количества (3 г) EAA стимулирует синтез мышечного белка, не влияя на активность фактора инициации e.g., Akt, киназа S6 и 4E – BP1 [20]. Небольшое увеличение концентрации ЕАА в плазме не имело бы никакого эффекта, если бы синтез белка ограничивался состоянием активации факторов инициации. В упомянутых выше исследованиях, в которых BCAA вводили внутривенно, разумно предположить, что такое большое увеличение концентрации BCAA могло бы активировать сигнальные факторы, однако синтез мышечного белка фактически снизился из-за отсутствия EAA в результате снижения расщепление белков.Таким образом, у людей введение ЕАА может увеличить синтез мышечного белка при отсутствии каких-либо изменений в активации факторов инициации, а активация факторов инициации при отсутствии потребления всех ЕАА не влияет на синтез мышечного белка. Эти результаты можно интерпретировать только как демонстрацию того, что ограничивающий скорость контроль синтеза белка базальных мышц у людей — это доступность всех EAA, а не активность анаболического сигнального фактора. Этот вывод ставит под сомнение роль пищевых добавок, содержащих только BCAA, как стимуляторов синтеза мышечного белка.

    Когда все доказательства и теории рассматриваются вместе, можно сделать вывод об отсутствии достоверных доказательств того, что прием одной только пищевой добавки с BCAA приводит к физиологически значимой стимуляции мышечного белка. Фактически, имеющиеся данные указывают на то, что BCAA действительно снижают синтез мышечного белка. Все EAA должны быть доступны в изобилии, чтобы усиление анаболической передачи сигналов приводило к ускоренному синтезу мышечного белка.

    Одновременное употребление BCAA с другими питательными веществами

    В центре внимания этого обзора была реакция на только BCAA, поскольку это логическая цель пищевых добавок BCAA.Как и в случае потребления только BCAA, существует ограниченное количество исследований совместного приема BCAA с другими питательными веществами. Когда BCAA или изоазотная смесь треонина, метионина и гистидина вводились людям вместе с углеводами, скорость синтеза мышечного белка снижалась одинаково в обеих группах, что указывает на отсутствие уникальной роли BCAA [21]. Точно так же потребление смеси BCAA с углеводами после упражнений с отягощениями не увеличивало анаболические сигнальные факторы в большей степени, чем одни углеводы [22].Таким образом, имеющиеся данные не поддерживают идею об особом анаболическом эффекте BCAA при приеме с углеводами.

    В отличие от отсутствия взаимодействия между BCAA и углеводами, BCAA могут усиливать анаболический эффект белковой пищи. Например, добавление 5 г BCAA к напитку, содержащему 6,25 г сывороточного протеина, увеличивало синтез мышечного протеина до уровня, сопоставимого с уровнем, вызываемым 25 г сывороточного протеина [23]. Этот результат предполагает, что один или несколько BCAA могут ограничивать скорость стимуляции синтеза мышечного белка сывороточным белком или что дополнительные BCAA индуцируют больший потенциал анаболического ответа мышц на сывороточный белок за счет активации факторов инициации.В любом случае реакция BCAA в сочетании с интактным белком — это другая проблема, чем эффект только BCAA, поскольку интактный белок обеспечивает все EAA, необходимые для производства интактного белка.

    Индивидуальные эффекты лейцина, валина и изолейцина

    В этой статье мы рассмотрели только реакцию на смеси BCAA. Ответы на отдельные BCAA (например, лейцин, валин или изолейцин) могут отличаться от комбинации этих трех по нескольким причинам.Доказательства указывают на то, что лейцин сам по себе может вызывать анаболический ответ (например, [24]), в то время как таких данных не существует для изолейцина или валина. Таким образом, можно было ожидать, что один лейцин будет более эффективным, чем комбинация всех BCAA. Однако есть два существенных ограничения пищевой добавки, содержащей только лейцин. Во-первых, те же проблемы, которые ограничивают степень стимуляции синтеза мышечного белка только BCAA в отношении доступности других EAA, необходимых для производства неповрежденного мышечного белка, также ограничивают ответ только на лейцин.Во-вторых, повышение концентрации лейцина в плазме активирует метаболический путь, который окисляет все BCAA. В результате прием одного лейцина приводит к снижению плазменных концентраций валина и изолейцина. Таким образом, доступность валина и изолейцина может стать ограничивающей для синтеза мышечного белка, когда потребляется только лейцин. Возможно, поэтому долгосрочные исследования результатов с добавлением лейцина в рацион не дали положительных результатов [25].Основное обоснование для диетической добавки, содержащей все BCAA, а не только лейцина, состоит в том, чтобы преодолеть снижение концентраций валина и изолейцина в плазме, которое могло бы произойти при приеме только лейцина.

    В то время как пищевая добавка со всеми BCAA преодолевает снижение концентрации, вызванное потреблением только лейцина, добавление валина и изолейцина, тем не менее, может ограничивать эффективность одного лейцина из-за конкуренции за перенос в мышечные клетки.Все BCAA активно транспортируются в клетки, включая мышечные, с помощью одной и той же транспортной системы. Следовательно, при совместном использовании BCAA конкурируют друг с другом за транспортировку в клетки. Если один из BCAA (например, лейцин) ограничивает скорость синтеза белка, добавление двух других BCAA может ограничить стимуляцию синтеза белка из-за снижения проникновения лейцина в клетку. BCAA также конкурируют с другими аминокислотами за транспорт, включая фенилаланин, и эта конкуренция может повлиять на внутримышечную доступность других EAA.В результате конкуренции за переносчики, возможно, что один лейцин, например, может оказывать временное стимулирующее действие на синтез мышечного белка (например, [21]), когда BCAA не вызывают такой реакции [13, 14].

    Аминокислоты с разветвленной цепью и синтез мышечного белка у человека: миф или реальность?

    Реферат

    Аминокислоты с разветвленной цепью (BCAA) — это лейцин, валин и изолейцин. Индустрия пищевых добавок с доходом в несколько миллионов долларов выросла на основе концепции, согласно которой пищевые добавки с разветвленными цепями вызывают анаболический ответ у людей, вызванный стимуляцией синтеза мышечного белка.В этом кратком обзоре обсуждаются теоретические и эмпирические основы этого утверждения. Теоретически максимальная стимуляция синтеза мышечного белка в постабсорбционном состоянии в ответ только на BCAA — это разница между распадом мышечного белка и синтезом мышечного белка (примерно на 30% больше, чем синтез), потому что другие EAA необходимы для синтеза нового белка. может быть получено только в результате распада мышечного белка. На самом деле максимальное увеличение синтеза мышечного белка на 30% является завышенной оценкой, потому что обязательное окисление EAA никогда не может быть полностью подавлено.Обширный поиск литературы не выявил исследований на людях, в которых была бы количественно оценена реакция синтеза мышечного белка на перорально введенные только BCAA, и только два исследования, в которых оценивался эффект только внутривенно введенных BCAA. Оба этих исследования внутривенных инфузий показали, что BCAA снижают синтез мышечного белка, а также его распад, что означает снижение оборота мышечного белка. Катаболическое состояние, при котором скорость распада мышечного белка превышала скорость синтеза мышечного белка, сохранялось во время инфузии BCAA.Мы пришли к выводу, что утверждение о том, что потребление пищевых продуктов с разветвленной цепью стимулирует синтез мышечного белка или вызывает анаболический ответ у людей, является необоснованным.

    Ключевые слова: лейцин, валин, изолейцин, люди, анаболический ответ

    Общие сведения

    Всего мышечный белок состоит из двадцати аминокислот. Девять из двадцати считаются незаменимыми аминокислотами (EAA), что означает, что они не могут вырабатываться организмом в физиологически значимых количествах и, следовательно, являются важными компонентами сбалансированной диеты.Мышечный белок находится в постоянном состоянии обмена, что означает, что синтез белка происходит непрерывно, чтобы заменить белок, потерянный в результате распада белка. Для синтеза нового мышечного белка все EAA вместе с одиннадцатью незаменимыми аминокислотами (NEAA), которые могут вырабатываться в организме, должны присутствовать в адекватных количествах. Аминокислоты с разветвленной цепью лейцин, изолейцин и валин являются тремя из девяти EAA. Лейцин является не только предшественником синтеза мышечного белка, но также может играть роль регулятора внутриклеточных сигнальных путей, которые участвуют в процессе синтеза белка (например,г., [1]).

    Идея о том, что BCAA могут обладать уникальной способностью стимулировать синтез мышечного белка, выдвигалась более 35 лет. Данные, подтверждающие эту гипотезу, были получены при изучении ответов крыс. В 1981 г. Бузе [2] сообщил, что у крыс BCAA могут ограничивать скорость синтеза мышечного белка. Дополнительные исследования подтвердили концепцию уникального эффекта BCAA на синтез мышечного белка у крыс, хотя лишь немногие изучали реакцию на пероральное употребление только BCAA.Гарлик и Грант показали, что введение смеси BCAA крысам увеличивает скорость синтеза мышечного белка в ответ на инсулин [3], но они не измеряли эффекты только BCAA. Введение крысам только BCAA Kobayashi et al. [4], как было показано, вызывает увеличение синтеза мышечного белка, но ответ был временным. Предположительно скорость синтеза быстро стала ограничиваться доступностью других EAA.

    Исследования синтеза мышечного белка у крыс имеют ограниченное отношение к реакции человека.Скелетные мышцы составляют гораздо меньший процент от общей массы тела у крыс по сравнению с людьми, и регулирование синтеза мышечного белка во многих отношениях отличается. Так, в своей знаменательной книге по метаболизму белков Уотерлоу и его коллеги на основании имеющихся данных пришли к выводу, что пищевые аминокислоты не стимулируют синтез мышечного белка у крыс [5]. Хотя недавняя работа ставит под сомнение это утверждение, ограниченный стимулирующий эффект пищевых аминокислот на синтез белка у крыс отражает тот факт, что в нормальных постабсорбтивных условиях имеются избыточные эндогенные аминокислоты, позволяющие увеличить синтез белка, если активность внутриклеточных факторы, участвующие в инициации синтеза белка, стимулируются.Выражаясь по-другому, синтез мышечного белка у крысы, по-видимому, ограничивается скорее процессом инициации, чем процессом трансляции. Напротив, как будет описано ниже, у людей этого не происходит. Еще одно важное различие между исследованиями, изучающими влияние аминокислот на синтез мышечного белка у людей и крыс, связано с обычно используемыми методологиями. В исследованиях на крысах обычно использовался метод «доза затопления» [6]. Эта процедура включает измерение включения индикатора аминокислот в мышечный белок в течение очень короткого промежутка времени, часто всего 10 минут.Этот подход не делает различий между кратковременной и устойчивой стимуляцией синтеза белка. Физиологически значима только длительная стимуляция синтеза. Потребление несбалансированной смеси аминокислот, такой как BCAA, может временно стимулировать синтез белка за счет использования эндогенных запасов других предшественников синтеза белка. Однако эндогенные запасы аминокислот, например, в плазме и свободных внутриклеточных пулах, весьма ограничены и могут быстро истощиться.Если стимуляция синтеза белка не может быть продолжена, это не имеет большого физиологического значения. Следовательно, метод дозирования наводнения, обычно используемый для измерения синтеза мышечного белка у крыс, дает результаты с неопределенным отношением к питанию человека. Поскольку пищевые добавки BCAA предназначены для употребления в пищу человеком, в центре внимания этого краткого обзора будут исследования на людях.

    Продажа BCAA в качестве пищевых добавок превратилась в бизнес с многомиллионным оборотом.В основе маркетинга этих продуктов лежит широко распространенное мнение о том, что потребление BCAA стимулирует синтез мышечного белка и, как следствие, вызывает анаболический ответ. BCAA также можно употреблять с целью улучшения «умственной сосредоточенности», но мы не будем рассматривать это применение. Основная цель этой статьи — оценить утверждение, что только BCAA являются анаболическими, — адекватно подтверждена теоретически или эмпирически исследованиями на людях. Неявным в нашей оценке будет исследование того, играет ли состояние фосфорилирования эукариотических факторов инициации роль регулятора скорости в регуляции синтеза мышечного белка у людей.

    Оборот мышечного белка и потребление белка с пищей

    Мышечный белок находится в постоянном состоянии оборота, что означает, что новый белок постоянно вырабатывается, в то время как старые белки расщепляются. Анаболическое состояние не имеет конкретного определения, но обычно относится к обстоятельствам, при которых скорость синтеза мышечного белка превышает скорость распада мышечного белка. Результат — набор мышечной массы. Обычно считается, что анаболическое состояние вызывается стимуляцией синтеза мышечного белка, но теоретически оно также может быть результатом ингибирования распада мышечного белка.

    Основная метаболическая цель приема добавок BCAA — максимизировать анаболическое состояние. Широко распространено мнение, что BCAA вызывают анаболическое состояние, стимулируя синтез мышечного белка. Обильная доступность всех EAA является необходимым условием для значительной стимуляции синтеза мышечного белка [7]. Синтез мышечного белка будет ограничен из-за отсутствия каких-либо EAA, тогда как нехватка NEAA может быть компенсирована увеличением de novo продукции дефицитных NEAA [7].В постпрандиальном состоянии после приема пищи, содержащей белок, все предшественники EAA, необходимые для синтеза нового мышечного белка, могут быть получены либо из повышенных концентраций в плазме, возникающих в результате переваривания потребленного белка, либо в результате его рециркуляции в результате распада белка. В этом случае обильной доступности EAA скорость синтеза мышечного белка превышает скорость распада, что приводит к анаболическому состоянию. В постабсорбтивном состоянии уровни EAA в плазме падают ниже постпрандиальных значений, потому что аминокислоты больше не всасываются.В результате EAA больше не поглощаются мышцами, а высвобождаются мышцами в плазму [8]. Это катаболическое состояние мышечного белка в постабсорбционном состоянии обеспечивает постоянную доступность EAA для других тканей для поддержания скорости синтеза белка за счет мышечного белка, который можно рассматривать как резервуар EAA для остальных. тела, чтобы опираться.

    Так как EAA не могут продуцироваться в организме и есть чистое высвобождение EAA из мышц, в постабсорбционном состоянии единственным источником предшественников EAA для синтеза мышечного белка являются внутриклеточные EAA, полученные в результате распада мышечного белка [8].Помимо того, что они повторно включаются в мышечный белок посредством синтеза, некоторые EAA, высвобождаемые в результате распада мышечного белка, могут частично окисляться в мышцах, что делает их недоступными для повторного включения в мышечный белок. EAA, высвобождаемые в результате распада мышечного белка, которые не включаются в мышечный белок или не окисляются в мышечной ткани, высвобождаются в плазму, после чего они могут либо поглощаться другими тканями в качестве предшественников для синтеза белка, либо необратимо окисляться [9].Таким образом, скорость синтеза мышечного белка всегда будет ниже, чем скорость распада мышечного белка в состоянии после абсорбции, из-за чистого потока EAA от распада белка в плазму и по окислительным путям. Другими словами, синтез мышечного белка не может превысить скорость распада мышечного белка, когда предшественники полностью получены из распада белка, и, таким образом, анаболическое состояние не может возникнуть в отсутствие потребления экзогенных аминокислот.

    Являются ли BCAA анаболическими в состоянии после абсорбции?

    Теоретические соображения

    Все предшественники EAA для синтеза мышечного белка в постабсорбирующем состоянии являются производными от распада мышечного белка.Постоянно сообщалось, что у нормальных людей после абсорбции скорость распада мышечного белка превышает скорость синтеза мышечного белка примерно на 30% [10]. Потребление только BCAA (то есть без других EAA) может только увеличить синтез мышечного белка в состоянии после абсорбции за счет повышения эффективности рециркуляции EAA из расщепления белка обратно в синтез белка, в отличие от их высвобождения в плазму или окисленный. Это связано с тем, что все 9 EAA (а также 11 NEAA) необходимы для производства мышечного белка, а EAA не могут производиться в организме.Если потребляются только 3 EAA, как в случае с BCAA, то распад белка является единственным источником оставшихся EAA, необходимых в качестве предшественников для синтеза мышечного белка. Следовательно, потребление только BCAA теоретически невозможно для создания анаболического состояния, при котором синтез мышечного белка превышает распад мышечного белка. Если сделать щедрое предположение, что потребление BCAA повышает эффективность рециркуляции EAA от распада мышечного белка до синтеза мышечного белка на 50%, то это приведет к увеличению скорости синтеза мышечного белка на 15% (30% рециркулируется в базовом режиме). состояние X 50% улучшение рециркуляции = 15% увеличение синтеза).Кроме того, снижение на 50% высвобождения ЕАА в плазму из мышц также уменьшило бы плазменный и внутриклеточный пулы свободных ЕАА. Рисунок схематично иллюстрирует эти принципы. Поскольку повышение эффективности рециркуляции на 50% будет примерно разумным максимальным пределом, это означает, что максимальная стимуляция синтеза мышечного белка не может превышать 15%. Это соответствовало бы увеличению фракционной скорости синтеза мышцы от базального значения около 0,050% / ч в базальном состоянии до 0.057% / час, и эту разницу во фракционной скорости синтеза (FSR) белка будет трудно точно измерить [11].

    Схематическое изображение рециркуляции незаменимых аминокислот (EAA) из распада мышечного белка в синтез мышечного белка в постабсорбционном состоянии. Произвольные единицы используются для простоты и основаны на измеренных скоростях каждого пути у людей после абсорбции [10]. a Нормальное состояние после абсорбции. Примерно 70% EAA, образующихся при распаде мышечного белка, перерабатываются в синтез белка [10].В результате расщепления белка происходит чистый отток примерно 85% EAA, которые могут либо поглощаться и включаться в белок в других тканях, либо окисляться. Около 15% EAA от распада белка частично окисляются в мышцах и недоступны для синтеза белка. Показатели внешнего потока и внутриклеточного окисления ЕАА являются средними, поскольку некоторые ЕАА, такие как фенилаланин, совсем не окисляются в мышцах. b Представление 50% увеличения эффективности рециркуляции EAA от распада мышечного белка до синтеза белка.В этом примере синтез увеличится с 70 до 80 единиц, или на 20%. Синтез белка никогда не может превышать распад белка в постабсорбционном состоянии, поскольку расщепление белка является единственным источником EAA

    Эмпирические результаты

    BCAA вводили внутривенно в единственных исследованиях, определяющих реакцию метаболизма мышечных белков у людей на BCAA один. Хотя введение BCAA не является общепринятым способом употребления пищевой добавки, было показано, что вводимые внутривенно и перорально аминокислоты вызывают сопоставимые эффекты на синтез мышечного белка в других случаях [12].Следовательно, есть смысл оценить статьи, в которых описывается реакция синтеза мышечного белка на внутривенное вливание BCAA у людей.

    Louard et al. [13] использовали метод баланса предплечий для количественной оценки реакции на внутривенное вливание смеси BCAA в течение 3 часов у 10 субъектов после абсорбции. Метод баланса предплечья включает измерение поглощения и высвобождения индивидуальных EAA (в данном случае лейцина и фенилаланина) и их изотопно-меченных аналогов.Рассчитаны скорости исчезновения (Rd) и появления (Ra) фенилаланина и лейцина. Исходя из предположения, что баланс лейцина и фенилаланина в мышцах является репрезентативным для всех EAA, Rd. Считается, что фенилаланин отражает синтез мышечного белка, поскольку синтез белка — единственная судьба фенилаланина, поглощаемого мышцами из плазмы. Rd. лейцина нельзя интерпретировать с точки зрения синтеза белка, поскольку лейцин, поглощаемый мышцами, может окисляться, а также включаться в белок.Трехчасовая инфузия BCAA увеличила плазменные концентрации всех 3 BCAA в четыре раза, в то время как концентрации других EAA снизились [13]. Синтез мышечного белка снизился с 37 +/- 3 до 21 +/- 2 нмоль / мин / 100 мл ноги (статистически значимо, p <0,05) [13], вместо того, чтобы стимулироваться инфузией BCAA. Не было значительных изменений в чистом балансе фенилаланина, что указывает на то, что распад мышечного белка также уменьшился на величину, аналогичную сокращению синтеза мышечного белка.Баланс между синтезом и распадом мышечного белка оставался отрицательным, что означало, что катаболическое состояние сохранялось, а анаболическое состояние не возникало. Одновременное снижение синтеза и распада мышечного белка во время инфузии BCAA можно охарактеризовать как снижение оборота мышечного белка.

    Аналогичные результаты были получены теми же исследователями, когда они увеличили продолжительность инфузии BCAA до 16 часов у 8 нормальных добровольцев и определили, стимулирует ли хроническое повышение BCAA синтез мышечного белка [14].Для расчета синтеза и распада мышечного белка использовалась та же методика баланса предплечий, что и в предыдущем исследовании. 16-часовая инфузия увеличивает концентрацию BCAA от 5 до 8 раз [14], что почти вдвое превышает уровни, достигаемые при пероральном приеме нормальной дозы BCAA [15]. Как и в предыдущем исследовании, синтез мышечного белка (отраженный фенилаланином Rd) был снижен у субъектов, получавших BCAA, по сравнению с инфузией физиологического раствора с 36 +/- 5 до 27 +/- 2 нмоль / мин / 100 мл. также снизился, а это означает, что оборот мышечного белка также снизился, и катаболическое состояние сохранялось.

    Из этих двух исследований можно сделать вывод, что инфузия BCAA не только не увеличивает скорость синтеза мышечного белка у людей, но фактически снижает скорость синтеза мышечного белка и скорость обмена мышечного белка. Катаболическое состояние не было обращено в анаболическое состояние ни в одном исследовании. Кроме того, можно ожидать, что устойчивое снижение скорости оборота мышечного белка будет иметь пагубный эффект на мышечную силу, даже если мышечная масса сохраняется. Оборот мышечного белка обновляет мышечные волокна и приводит к увеличению эффективности сокращения на уровне отдельных волокон [16], что отражается в увеличении силы in vivo, независимо от мышечной массы [17, 18].

    Неспособность синтеза мышечного белка значительно увеличиться в ответ на инфузию только BCAA, как и ожидалось, в соответствии с теоретическими соображениями, обсужденными выше и проиллюстрированными на рис., В отношении требования для всех EAA поддерживать увеличение. Вместо этого, поскольку распад мышечного белка уменьшился, доступность EAA также упала, что, в свою очередь, фактически снизило скорость синтеза мышечного белка.

    Ограничивают ли анаболические сигнальные факторы скорость в постабсорбционном состоянии?

    Утверждение о том, что синтез мышечного белка стимулируется BCAA, по крайней мере частично, связано с наблюдением усиления внутриклеточной анаболической передачи сигналов, включая состояние активации ключевых факторов, участвующих в инициации синтеза белка [1].Теория о том, что активация внутриклеточных анаболических сигнальных факторов вызывает повышенную скорость синтеза мышечного белка, прочно вошла в современные концепции регуляции синтеза мышечного белка. Повышенная анаболическая передача сигналов в ответ на BCAA была приведена в качестве доказательства стимуляции синтеза мышечного белка даже в отсутствие измерения синтеза мышечного белка (например, [1]). Однако активация анаболических сигнальных путей может совпадать с повышенным синтезом мышечного белка только при наличии достаточного количества EAA, обеспечивающего необходимые предшественники для производства полноценного белка.

    Диссоциация состояния фосфорилирования сигнальных факторов и синтеза мышечного белка у людей была показана в различных обстоятельствах, когда доступность всех EAA ограничена. Например, повышение концентрации инсулина (например, в результате приема глюкозы) является мощным активатором анаболических сигнальных путей, но это не может увеличить мышечный FSR из-за дефицита EAA [19]. И наоборот, потребление небольшого количества (3 г) EAA стимулирует синтез мышечного белка, не влияя на активность фактора инициации e.g., Akt, киназа S6 и 4E – BP1 [20]. Небольшое увеличение концентрации ЕАА в плазме не имело бы никакого эффекта, если бы синтез белка ограничивался состоянием активации факторов инициации. В упомянутых выше исследованиях, в которых BCAA вводили внутривенно, разумно предположить, что такое большое увеличение концентрации BCAA могло бы активировать сигнальные факторы, однако синтез мышечного белка фактически снизился из-за отсутствия EAA в результате снижения расщепление белков.Таким образом, у людей введение ЕАА может увеличить синтез мышечного белка при отсутствии каких-либо изменений в активации факторов инициации, а активация факторов инициации при отсутствии потребления всех ЕАА не влияет на синтез мышечного белка. Эти результаты можно интерпретировать только как демонстрацию того, что ограничивающий скорость контроль синтеза белка базальных мышц у людей — это доступность всех EAA, а не активность анаболического сигнального фактора. Этот вывод ставит под сомнение роль пищевых добавок, содержащих только BCAA, как стимуляторов синтеза мышечного белка.

    Когда все доказательства и теории рассматриваются вместе, можно сделать вывод об отсутствии достоверных доказательств того, что прием одной только пищевой добавки с BCAA приводит к физиологически значимой стимуляции мышечного белка. Фактически, имеющиеся данные указывают на то, что BCAA действительно снижают синтез мышечного белка. Все EAA должны быть доступны в изобилии, чтобы усиление анаболической передачи сигналов приводило к ускоренному синтезу мышечного белка.

    Одновременное употребление BCAA с другими питательными веществами

    В центре внимания этого обзора была реакция на только BCAA, поскольку это логическая цель пищевых добавок BCAA.Как и в случае потребления только BCAA, существует ограниченное количество исследований совместного приема BCAA с другими питательными веществами. Когда BCAA или изоазотная смесь треонина, метионина и гистидина вводились людям вместе с углеводами, скорость синтеза мышечного белка снижалась одинаково в обеих группах, что указывает на отсутствие уникальной роли BCAA [21]. Точно так же потребление смеси BCAA с углеводами после упражнений с отягощениями не увеличивало анаболические сигнальные факторы в большей степени, чем одни углеводы [22].Таким образом, имеющиеся данные не поддерживают идею об особом анаболическом эффекте BCAA при приеме с углеводами.

    В отличие от отсутствия взаимодействия между BCAA и углеводами, BCAA могут усиливать анаболический эффект белковой пищи. Например, добавление 5 г BCAA к напитку, содержащему 6,25 г сывороточного протеина, увеличивало синтез мышечного протеина до уровня, сопоставимого с уровнем, вызываемым 25 г сывороточного протеина [23]. Этот результат предполагает, что один или несколько BCAA могут ограничивать скорость стимуляции синтеза мышечного белка сывороточным белком или что дополнительные BCAA индуцируют больший потенциал анаболического ответа мышц на сывороточный белок за счет активации факторов инициации.В любом случае реакция BCAA в сочетании с интактным белком — это другая проблема, чем эффект только BCAA, поскольку интактный белок обеспечивает все EAA, необходимые для производства интактного белка.

    Индивидуальные эффекты лейцина, валина и изолейцина

    В этой статье мы рассмотрели только реакцию на смеси BCAA. Ответы на отдельные BCAA (например, лейцин, валин или изолейцин) могут отличаться от комбинации этих трех по нескольким причинам.Доказательства указывают на то, что лейцин сам по себе может вызывать анаболический ответ (например, [24]), в то время как таких данных не существует для изолейцина или валина. Таким образом, можно было ожидать, что один лейцин будет более эффективным, чем комбинация всех BCAA. Однако есть два существенных ограничения пищевой добавки, содержащей только лейцин. Во-первых, те же проблемы, которые ограничивают степень стимуляции синтеза мышечного белка только BCAA в отношении доступности других EAA, необходимых для производства неповрежденного мышечного белка, также ограничивают ответ только на лейцин.Во-вторых, повышение концентрации лейцина в плазме активирует метаболический путь, который окисляет все BCAA. В результате прием одного лейцина приводит к снижению плазменных концентраций валина и изолейцина. Таким образом, доступность валина и изолейцина может стать ограничивающей для синтеза мышечного белка, когда потребляется только лейцин. Возможно, поэтому долгосрочные исследования результатов с добавлением лейцина в рацион не дали положительных результатов [25].Основное обоснование для диетической добавки, содержащей все BCAA, а не только лейцина, состоит в том, чтобы преодолеть снижение концентраций валина и изолейцина в плазме, которое могло бы произойти при приеме только лейцина.

    В то время как пищевая добавка со всеми BCAA преодолевает снижение концентрации, вызванное потреблением только лейцина, добавление валина и изолейцина, тем не менее, может ограничивать эффективность одного лейцина из-за конкуренции за перенос в мышечные клетки.Все BCAA активно транспортируются в клетки, включая мышечные, с помощью одной и той же транспортной системы. Следовательно, при совместном использовании BCAA конкурируют друг с другом за транспортировку в клетки. Если один из BCAA (например, лейцин) ограничивает скорость синтеза белка, добавление двух других BCAA может ограничить стимуляцию синтеза белка из-за снижения проникновения лейцина в клетку. BCAA также конкурируют с другими аминокислотами за транспорт, включая фенилаланин, и эта конкуренция может повлиять на внутримышечную доступность других EAA.В результате конкуренции за переносчики, возможно, что один лейцин, например, может оказывать временное стимулирующее действие на синтез мышечного белка (например, [21]), когда BCAA не вызывают такой реакции [13, 14].

    Что такое BCAA и как они работают?

    Что такое незаменимые аминокислоты?

    BCAA — это незаменимые аминокислоты лейцин, изолейцин и валин, которые составляют около 35% мышечного белка вашего тела. Они «необходимы», потому что ваше тело не производит их самостоятельно — вы должны получать их с пищей и добавками для тренировок.Как и другие аминокислоты, они являются строительными блоками белка. Но эти особые аминокислоты также могут помочь сохранить запасы гликогена в мышцах, которые подпитывают ваши мышцы и сводят к минимуму распад белка во время упражнений. Перевод? BCAA могут помочь вам получить больше от ежедневных занятий в тренажерном зале.

    Что делают BCAA?

    BCAA подпитывают ваши скелетные мышцы во время тренировки, что может помочь вам выйти за пределы своих возможностей. Добавление BCAA помогает сохранить запасы гликогена — основного топлива, которое мышцы используют для производства энергии.Это означает, что у вашего тела есть надежный источник энергии, к которому вы можете подключиться во время тренировки, что поможет вам двигаться дальше. Кроме того, обильные запасы гликогена не позволяют вашему телу расщеплять мышечный белок для получения энергии. Вот почему добавки BCAA беспроигрышны для ваших мышц — они помогают поддерживать и защищать их. Это потенциально больше энергии, больше повторений и больше прибыли.

    Для чего нужны BCAA?

    BCAA также могут помочь ускорить восстановление мышечного белка после тренировки, особенно если вы потребляете их с углеводами.Новые исследования показывают, что лейцин является главным игроком BCAA, когда речь идет о регулировании генетических сигнальных путей, участвующих в синтезе мышечного белка. Вот почему качественные добавки BCAA имеют более высокое соотношение лейцина к изолейцину и валину. Типичная суточная доза включает пять граммов лейцина, четыре грамма валина и два грамма изолейцина.

    Как загрузить

    Добавки

    BCAA можно употреблять до, во время и после тренировки. Напитки из сывороточного протеина содержат полный спектр всех трех специальных аминокислот.Для достижения оптимальных результатов используйте их в сочетании со здоровой и сбалансированной диетой. Если вы хотите повысить уровень лейцина, убедитесь, что коричневый рис и цельнозерновые продукты являются частью вашего обычного рациона. Орехи, такие как миндаль и кешью, богаты изолейцином, а валин выбирают молочные продукты, зерна, грибы и арахис. Продукты животного происхождения, такие как красное мясо, рыба, яйца и курица, а также вегетарианские альтернативы, такие как соя, также полны BCAA.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *