Структура аминокислоты: строение и классификация аминокислот: таблицы с формулами

Содержание

строение и классификация аминокислот: таблицы с формулами

Строение основных аминокислот: 20 «магических», входящих в состав белка. Структура. Классификации.  Таблицы с формулами. Название и международные сокращения протеиногенных аминокислот.  С вами я, Галина Баева, 20 «магических» аминокислот и красивые таблицы со структурными формулами природных аминокислот.

Природные аминокислоты — это структурные единицы (мономеры) белков. В состав белков входят всего 20 т.н. «магических» аминокислот, которые также называются протеиногенными. Все они имеют сходное строение.

Кроме протеиногенных аминокислот в организме присутствуют и непротеиногенные, которые выполняют различную работу, в основном это промежуточные соединения в биохимическом конвейере, как например, орнитин, сигнальные молекулы, как β-аланин или нейромедиаторы, как ГАМК.

Особенности строения природных аминокислот

Строение аминокислот тесно связано с их функциями. Сходные по химической структуре вещества делают сходную работу. Попробуем разобраться, чтобы потом не путаться в аннотациях к препаратам.

Все аминокислоты слеплены по одному лекалу.

Голова – аминный остаток, содержащий азот N.

Углеродный скелет, состоящий из цепочки атомов углерода (в простейшем случае – один углерод, к которому «спереди» прицеплен аминный остаток, а сзади – карбоновый хвост)

Хвост – остаток карбоновой кислоты – СООН

Строение аминокислот: структурные формулы и классификации

Сбоку к углеродному скелету может быть присоединена еще какая-нибудь химическая группировка, которая придает данному веществу особые свойства.

Углеродная цепочка вместе с кислотным хвостом, присоединенная к аминной голове, называется мудреным словом «алифатический радикал».

Номенклатура аминокислот

Углеродная цепочка (скелет) может состоять как из 1 атома углерода, так и из нескольких. В последнем случае имеет значение, к какому атому углерода, начиная счет от карбоксильной группы, присоединится аминная голова. Это может быть как 1-ый атом углерода, так и 2-ой, 3-ий и далее. Химики договорились обозначать атомы углерода не цифрами, а буквами греческого алфавита: α — 1-ый атом углерода, начиная с карбоксильного хвоста, β— 2-ой, γ — 3-й, и т.д.

строение аминокислот

Если аминогруппа присоединяется к углероду в α-положении, такую аминокислоту называют α-аминокислотой, соответственно, если аминогруппа присоединена в β-положении — то это β-аминокислота, если в γ — то γ -аминокислота.

Все 20 природных протеиногенных аминокислот относятся к группе α -аминокислот.

Из β — аминокислот наиболее известен β-аланин, а из γ-аминокислот наиболее известна γ-аминомасляная кислота (ГАМК).   Их структурные формулы приведены ниже.

бета-аланин и ГАМК структурные формулы

Таблица 1 Строение протеиногенных аминокислот

структурные формулы и название протеиногенных аминокислот

Таблица 2 Структурные формулы аминокислот

структурные формулы аминокислот

Таблица 3 Модели структурных формул аминокислот

таблица структурные формулы аминокислот

Классификация аминокислот

Существует несколько классификаций аминокислот:

  1. В зависимости от строения алифатического радикала, аминокислоты подразделяются на следующие группы:
  • Просто аминокислоты с алифатическим радикалом, т.е. такие, у которых углеродная цепочка не содержит дополнительных затей. Их называют МоноАминоМоноКарбоновые:  глицин и аланин
  • Аминокислоты с разветвленной боковой цепью, у которых углеродный скелет образует боковые вилки: валин, лейцин, изолейцин. Изолейцин по химическому составу не отличим от лейцина, но его углеродный скелет по-другому загнут, т.е. он является стереоизомером.  Иногда его выделяют в отдельную аминокислоту, а иногда – нет. Аминокислоты с разветвленной боковой цепью тоже относятся к группе МоноАминоМоноКарбоновых аминокислот.
  • Аминокислоты, у которых в алифатическом радикале имеются разные группировки:

Спиртовая  – ОН.   Их называют ОксиМоноАминоМоноКарбоновые: серин и треонин

Карбоксильная, т.е. второй кислотный хвост. Это МоноАминоДиКарбоновые аминокислоты: аспарагиновая кислота (аспартат) и глутаминовая кислота (глутамат). Их называют еще Кислые аминокислоты, этакое «масло масляное».

Амидная. Карбоксильный хвост отрастил себе вторую аминную голову: аспарагин и глутамин. Кажется, понятным, что это производные соответственно аспартата и глутамата. Их называют Амиды МоноАминоДиКарбоновых аминокислот

Аминная.  Вторая аминная голова присоединилась к углеродному скелету: лизин

Гуанидиновая: дополнительные аминные вставки — аргинин

Лизин и Аргинин относят также к группе ДиАминоМоноКарбоновых аминокислот, ибо у них есть по второй аминной группе. Поскольку эти аминокислоты в нейтральной среде (вода, рН=7), проявляют щелочные (основные) свойства, повышая водородный показатель (рН становится › 7), то их относят к группе Основных аминокислот

Серосодержащие аминокислоты. Имеют в радикале атом серы S:  цистеин, метионин

Аминокислоты, содержащие ароматический радикал– углеродное колечко или Ароматические аминокислоты  фенилаланин, тирозин, триптофан

Аминокислоты с гетероциклическим радикалом – колечко с атомом азота вместо углерода, поэтому он «гетеро» — «разнообразный»: триптофан и гистидин.

Нетрудно заметить, что триптофан входит в группу как ароматических аминокислот, так и в группу аминокислот с гетероциклическим радикалом, а все потому, что у него есть как гетороциклический радикал, так и ароматический.

Иминокислоты – углеродный скелет не вытянут в цепочку, а замкнут в колечко, из которого торчат аминная голова и рядом кислотный хвост: пролин и оксипролин

2. Классификация,  в основу которой положена полярность алифатического радикала.

  • Неполярные (гидрофобные) аминокислоты. Они имеют неполярные связи между атомами C-C, C-H. Это глицин, аланин, валин, лейцин, изолейцин, пролин, триптофан — 8 аминокислот
  • Полярные незаряженные (гидрофильные) аминокислоты. Они имеют полярные связи между атомами С-О, C-N, O-H, S-H. Это серин, аспарагин, глутамин, треонин, метионин — 5 аминокислот
  • Полярные отрицательно-заряженные аминокислоты.  У них в радикале присутствуют группы, которые в водной среде (рН = 7) заряжены отрицательно, т.е. они выступают как отрицательно-заряженный ион (анион). Это аспарагиновая и глутаминовая кислоты, тирозин, цистеин — 4 аминокислоты
  • Полярные положительно-заряженные аминокислоты. У них в радикале присутствуют группы, которые в водной среде (рН=7) заряжены положительно, т.е. они выступают как положительно-заряженный ион (катион). Это лизин, аргинин, гистидин — 3 аминокислоты.

Чем больше в белке аминокислот, обладающих полярностью, тем выше способность белка к химическим реакциям, т.е. его реактогенность. С реактогенностью белка непосредственно связаны его функции. Белки соединительной ткани, например кератин, входящий в состав волос и ногтей, имеет мало полярных аминокислот. Напротив, ферменты — белки-катализаторы биохимических реакций, обладают аминокислотным составом с множеством полярных групп.

3. Классификация по отношению к водородному показателю (рН)

  • Аминокислоты, обладающие нейтральными свойствами с рН 5,97 – 6,02.  Это  глицин, аланин, серин, валин, лейцин, изолейцин,треонин, цистин, метионин — 9 аминокислот.  Они имеют одну аминную голову и один карбоксильный хвост
  • Аминокислоты, обладающие слабокислыми свойствами рН 3,0 – 5,7. Это аспарагиновая и глутаминовая кислоты. Они имеют одну аминную голову, но два карбоксильных хвоста, поэтому их называют «кислотами».
  • Аминокислоты, обладающие щелочными свойствами с  рН 9,7 – 10,7.  У них две аминные головы и один карбоксильный хвост. Это лизин, аргинин, гистидин.

4. Классификация по способности к синтезу в организме человека и животных.

  • Заменимые аминокислоты: глицин, серин, аланин, аспарагиновая кислота, аспарагин, глутаминовая кислота, глутамин, пролин
  • Условно-заменимые аминокислоты: аргинин, гистидин, тирозин, цистеин
  • Незаменимые аминокислоты: валин, лейцин, изолейцин, треонин, лизин, триптофан, фенилаланин, метионин

Подробнее о них рассказывается здесь:  Аминокислоты заменимые и незаменимые: где взять.

5. Классификация аминокислот по путям биосинтеза.

В живых организмах аминокислоты могут производится (синтезироваться) из других соединений. Путь биосинтеза — это последовательность химических реакций, которые обусловлены наследственной (генетической) матрицей. Он записан в генетическом коде и обусловлен наличием ферментов, запускающих данные реакции. Биосинтез идет не хаотично, а количество исходных и промежуточных соединений ограничено. Так из всего многообразия природных аминокислот для синтеза белка используются только 20. Соответственно, исходные и промежуточные соединения на путях биосинтеза отдельных аминокислот образуют кластеры или семейства, где соединения могут преобразовываться друг в друга.

  • Семейство аспартата: аспарагиновая кислота (аспартат), аспарагин, изолейцин, лизин, треонин, метионин
  • Семейство глутамата: глутаминовая кислота (глутамат), глутамин, пролин, аргинин
  • Семейство пирувата: аланин, валин, лейцин
  • Семейство серина: серин, глицин, цистеин
  • Семейство пентоз: гистидин, триптофан, фенилаланин, тирозин
  • Семейство шикимата: триптофан, фенилаланин, тирозин

Надо сказать, что данные пути метаболизма реализуются в биологических системах, но не все они имеются в организме человека. Так высшие животные и человек не способны синтезировать ароматическое кольцо, поэтому путь шикимата — это не для нас. Аналогично с другими путями синтеза незаменимых аминокислот. Для наглядности незаменимые аминокислоты выделены жирным шрифтом.

6. Классификация аминокислот по путям катаболизма

Катаболизм — процесс распада, противоположен анаболизму или процессу синтеза. В организме катаболизм также обусловлен генетической программой и набором ферментов. Конечным итогом деградации аминокислот является аммиак, вода и углекислый газ, а также выделяется энергия в виде тепла или связанная в молекулах АТФ. В зависимости от промежуточных соединений, дающих энергию, аминокислоты подразделяются на следующие группы:

  • Глюкогенные: дающие метаболиты (промежуточные соединения), из которых может быть синтезирована глюкоза: глицин, аланин, серин, треонин, валин, аспарагиновая кислота, аспарагин, глутаминовая кислота, глутамин, пролин, аргинин, гистидин, цистин, метионин
  • Кетогенные: распадающиеся до ацетоацетилКоА и ацетилКоА, из которых могут быть синтезированы кетонные тела: лизин, лейцин
  • Промежуточные: при распаде этих аминокислот образуются метаболиты обоих типов: изолейцин, триптофан, фенилаланин, тирозин

Подробнее о глюкогенных и кетогенных аминокислотах можно прочитать здесь: Гликогенные аминокислоты

Правые и левые аминокислоты

заменимые и незаменимые аминокислоты: L и D

В зависимости от прикрепления аминогруппы по отношению к карбоксильному хвосту в углеродной цепочке, аминокислоты могут быть «правыми» или «левыми», иначе говоря, их относят к D- или L- изомерам. Такие формы называют оптически активными, они не отличаются по химическому составу, но в пространстве относятся друг другу, как левая и правая рука.

В белковые молекулах присутствуют только L (левые) -изомеры аминокислот, правые (D) -изомеры могут обладать особыми свойствами и выступать как медиаторы, т.е. сигнальные молекулы, но чаще они образуют балласт. В обычных продуктах питания D-аминокислот практически нет. Они образуются при химическом синтезе и могут встречаться в искусственных протеинах, используемых в спортивном питании или в качестве биологически-активных добавок к пище. D-аминокислоты с трудом расщепляются ферментами, ибо они не физиологичны. В печени и почках содержится особый фермент — оксидаза D-аминокислот, предполагают, что она превращает нефизиологичные правые аминокислоты в физиологичные левые. Количество ее невелико, т.к. обычно в пище содержится очень мало D-аминокислот.

При химическом синтезе образуется равное количество D- и L- изомеров, но в синтезе белка участвуют аминокислоты только L – ряда. Это следует учитывать лицам, принимающим препараты аминокислот: L-аминокислоты будут существенно дороже из-за необходимости их выделения из смеси, но эффект от их применения будет существенно выше

Читайте далее о том, что делает в организме каждая аминокислота. Поверьте, им есть, чем заняться. С вами была Галина Батуро. Делитесь информацией в соц.сетях, оставляйте комментарии.

 

Свойства и функции аминокислот

Аминокислоты — главный строительный материал любого живого организма. По своей природе они являются первичными азотистыми веществами растений, которые синтезируются из почвы. Строение и функции белков и аминокислот зависят от их состава.

Структура аминокислоты

Каждая ее молекула имеет карбоксильные и аминные группы, которые соединены с радикалом. Если аминокислота содержит 1 карбоксильную и 1 амино-группу, строение ее можно обозначить формулой, представленной ниже.

Аминокислоты, которые имеют 1 кислотную и 1 щелочную группу, называют моноаминомонокарбоновыми. В организмах также синтезируются аминокислоты, строение и функции которых обусловливают 2 карбоксильных группы или 2 аминных группы. Аминокислоты, содержащие 2 карбоксильные и 1 аминную группы, называют моноаминодикарбоновыми, а имеющие 2 аминные и 1 карбоксильную — диаминомонокарбоновыми.

Также они различны по строению органического радикала R. У каждой из них имеется свое наименование и структура. Отсюда и различные функции аминокислот. Именно наличие кислотной и щелочной групп обеспечивает ее высокую реактивность. Эти группы соединяют аминокислоты и образуют полимер – белок. Белки еще именуются полипептидами из-за своего строения.

Аминокислоты как строительный материал

Молекула белка — это цепочка из десятков или сотен аминокислот. Белки отличаются по составу, количеству и порядку расположения аминокислот, ведь число сочетаний из 20 составляющих практически бесконечно. Одни из них имеют весь состав незаменимых аминокислот, иные обходятся без одной или нескольких. Отдельные аминокислоты, структура, функции которых подобны белкам человеческого тела, не применяются в качестве пищевых, так как малорастворимы и не расщепляются ЖКТ. К таким принадлежат белки ногтей, волос, шерсти или перьев.

Функции аминокислот трудно переоценить. Эти вещества выступают главной пищей в рационе людей. Какую функцию выполняют аминокислоты? Они увеличивают рост мышечной массы, помогают укреплению суставов и связок, восстанавливают поврежденные ткани организма и участвуют во всех процессах, происходящих в теле человека.

Незаменимые аминокислоты

Только из добавок или пищевых продуктов можно получить незаменимые аминокислоты. Функции в процессе формирования здоровых суставов, крепких мышц, красивых волос очень значимы. К таким аминокислотам относятся:

  • фенилаланин;
  • лизин;
  • треонин;
  • метионин;
  • валин;
  • лейцин;
  • триптофан;
  • гистидин;
  • изолейцин.

Функции аминокислот незаменимых

Эти кирпичики выполняют важнейшие функции в работе каждой клетки человеческого организма. Они незаметны, пока поступают в организм в достаточном количестве, но их недостаток существенно ухудшает работу всего организма.

  1. Валин возобновляет мышцы, служит отличным источником энергии.
  2. Гистидин улучшает состав крови, способствует восстановлению и росту мышц, улучшает работу суставов.
  3. Изолейцин помогает выработке гемоглобина. Контролирует количество сахара в крови, повышает энергичность человека, выносливость.
  4. Лейцин укрепляет иммунитет, следит за уровнем сахара и лейкоцитов в крови. Если уровень лейкоцитов завышен: он их понижает и подключает резервы организма для ликвидации воспаления.
  5. Лизин помогает усвоению кальция, что формирует и укрепляет кости. Помогает выработке коллагена, улучшает структуру волос. Для мужчин это отличный анаболик, так как он наращивает мышцы и увеличивает мужскую силу.
  6. Метионин нормализует работу пищеварительной системы и печени. Участвует в расщеплении жиров, убирает токсикоз у беременных, благотворно влияет на волосы.
  7. Треонин улучшает работу ЖКТ. Повышает иммунитет, участвует в создании эластина и коллагена. Треонин препятствует отложению жира в печени.
  8. Триптофан отвечает за эмоции человека. Вырабатывает серотонин — гормон счастья, тем самым нормализует сон, поднимает настроение. Укрощает аппетит, благотворительно влияет на сердечную мышцу и артерии.
  9. Фенилаланин служит передатчиком сигналов от нервных клеток в мозг головы. Улучшает настроение, подавляет нездоровый аппетит, улучшает память, повышает восприимчивость, снижает боль.

Дефицит незаменимых аминокислот приводит к остановке роста, нарушению обмена веществ, снижению мышечной массы.

Заменимые аминокислоты

Это такие аминокислоты, строение и функции которых вырабатываются в организме:

  • аргинин;
  • аланин;
  • аспарагин;
  • глицин;
  • пролин;
  • таурин;
  • тирозин;
  • глутамат;
  • серин;
  • глутамин;
  • орнитин;
  • цистеин;
  • карнитин.

Функции аминокислот заменимых

  1. Цистеин ликвидирует токсические вещества, участвует в создании тканей кожи и мышц, представляет собой естественный антиоксидант.
  2. Тирозин снижает физическую усталость, ускоряет метаболизм, ликвидирует стресс и депрессию.
  3. Аланин служит для роста мускулатуры, является источником энергии.
  4. Аспарагиновая кислота увеличивает метаболизм и снижает образование аммиака при больших нагрузках.
  5. Цистин устраняет боль при травмировании связок и суставов.
  6. Глутаминовая кислота отвечает за мозговую активность, во время длительных физических нагрузок переходит в глюкозу, вырабатывая энергию.
  7. Глутамин восстанавливает мышцы, повышает иммунитет, ускоряет метаболизм, усиливает работу мозга и создает гормон роста.
  8. Глицин необходим для работы мышц, расщепления жира, стабилизации артериального давления и сахара в крови.
  9. Карнитин перемещает жировые кислоты в клетки, где совершается их расщепление с выделением энергии, в результате чего сжигается лишний жир и генерируется энергия.
  10. Орнитин производит гормон роста, участвует в процессе мочеобразования, расщепляет жирные кислоты, помогает выработке инсулина.
  11. Пролин обеспечивает производство коллагена, он необходим для связок и суставов.
  12. Серин повышает иммунитет и вырабатывает энергию, нужен для быстрого метаболизма жирных кислот и роста мышц.
  13. Таурин расщепляет жир, поднимает сопротивляемость организма, синтезирует желчные соли.

Белок и его свойства

Белки, или протеины – высокомолекулярные соединения с содержанием азота. Понятие «протеин», впервые обозначенное Берцелиусом в 1838 г., происходит от греческого слова и означает «первичный», что отображает лидирующее значение протеинов в природе. Разновидность белков дает возможность для существования огромного количества живых существ: от бактерий до человеческого организма. Их существенно больше, чем других макромолекул, ведь белки – это фундамент живой клетки. Составляют приблизительно 20% от массы человеческого тела, больше 50% сухой массы клетки. Такое количество разнообразных белков объясняется свойствами двадцати различных аминокислот, которые взаимодействуют друг с другом и создают полимерные молекулы.

Выдающееся свойство белков — способность к самостоятельному созданию определенной, свойственной конкретному белку пространственной структуры. По химическому строению белки – это биополимеры с пептидными связями. Для химического состава белков свойственно постоянное среднее содержание азота – приблизительно 16%.

Жизнь, а также рост и развитие организма невозможны без функции белковых аминокислот строить новые клетки. Белки нельзя заменить прочими элементами, их роль в человеческом организме является чрезвычайно важной.

Функции белков

Необходимость белков заключается в таких функциях:

  • он необходим для роста и развития, так как выступает главным строительным материалом для создания новых клеток;
  • управляет метаболизмом, во время которого освобождается энергия. После принятия пищи скорость метаболизма увеличивается, например, если еда состоит из углеводов, метаболизм ускоряется на 4%, если из белков – на 30%;
  • регулируют водный баланс в организме, благодаря своей гидрофильности – способности притягивать воду;
  • усиливают работу иммунной системы, синтезируя антитела, которые защищают от инфекции и ликвидируют угрозу заболевания.

Продукты — источники белков

Мышцы и скелет человека состоят из живых тканей, которые на протяжении жизни не только функционируют, но и обновляются. Восстанавливаются после повреждений, сохраняют свою силу и прочность. Для этого им требуются вполне определенные питательные вещества. Пища обеспечивает организм энергией, необходимой для всех процессов, включая работу мышц, рост и восстановление тканей. А белок в организме используется и как источник энергии, и как стройматериал.

Поэтому очень важно соблюдать его ежедневное использование в пищу. Богатые белком продукты: курица, индейка, постная ветчина, свинина, говядина, рыба, креветки, фасоль, чечевица, бекон, яйца, орех. Все эти продукты обеспечивают организм белком и дают энергию, необходимую для жизни.

Химическая структура и свойства аминокислот

Строение аминокислот

Определение 1

Аминокислоты – низкомолекулярные органические соединения, состоящие из одной или двух аминогрупп (- $NH_2$) и одной или двух карбоксильных групп (- $COOH$), которые определяют соответственно их щелочные или кислотные свойства.

Этим объясняются амфотерные свойства аминокислот, благодаря чему они выполняют в клетке важную роль буферных соединений.

Определение 2

Аминокислоты — это производные органических карбоновых кислот, у которых один атом водорода в углеродном радикале замещён аминогруппой, расположенной, как правило, рядом с карбоксильной группой.

На данное время установлено строение и функции более 100 природных аминокислот.

Пример 1

$\gamma$ – аминомасляная кислота берёт участие в процессах торможения в нервной системе, другие аминокислоты являются предшественниками витаминов, антибиотиков, гормонов, алкалоидов и других биологически активных веществ.

Большинство аминокислот находятся в организме в свободном состоянии, но лишь 20 из них являются структурными элементами белков. Такие аминокислоты называют протеиногенными (которые образуют протеины, то есть белки).

Готовые работы на аналогичную тему

Все аминокислоты – растворимые в воде кристаллические вещества, не имеющие цвета.

Все они содержат аминогруппу (- $NH_2$), имеющую щелочные свойства, и карбоксильную группу (- $COOH$), имеющую кислотные свойства. Основные аминокислоты содержат более одной аминогруппы, а кислые – больше одной карбоксильной группы.

Аминокислоты соединяются в молекуле белка с помощью пептидной связи, которая возникает между карбоксильной группой одной аминокислоты и аминогруппой другой с выделением молекулы воды.

При соединении большого количества аминокислот образуется полипептид. Белковая молекула может состоять из одной или нескольких полипептидных цепей.

Аминокислоты отличаются по строению боковых цепей, которые отмечаются буквой $R$ (радикал). Общая формула всех аминокислот:

Замечание 1

Благодаря наличию радикалов аминокислоты могут вступать в разнообразные химические реакции, в том числе и после того, как они войдут в состав белковой молекулы. В связи с этим белкам присуща высокая реакционная способность.

Значение аминокислот

У растений все необходимые аминокислоты синтезируются из углекислого газа, воды и аммиака.

Человек и много других животных потеряли способность синтезировать некоторые протеиногенные аминокислоты, которые незаменимыми в питании. Они обязательно должны получать эти аминокислоты с пищей. К ним относятся лейцин, изолейцин, лизин, треонин, валин, фенилаланин, аланин, триптофан, метионин, гистидин.

Замечание 2

Недостаточное содержание аминокислот в рационе животных и в пище человека приводит к нарушению синтеза белков, замедлению развития и роста организма, возникновению различных заболеваний.

Эти аминокислоты в промышленном масштабе путём химического (метионин) или микробиологического синтеза. При введении в рацион 0,2 – 0,5% таких незаменимых аминокислот как лизин, триптофан, треонин и метионин, повышает продуктивность домашних животных и сокращает траты кормового белка более чем на 25%.

Аминокислоты — номенклатура, получение, химические свойства. Белки » HimEge.ru

Строение аминокислот

Аминокислоты — гетерофункциональные соеди­нения, которые обязательно содержат две функцио­нальные группы: аминогруппу — NH2 и карбоксиль­ную группу —СООН, связанные с углеводородным радикалом.Общую формулу простей­ших аминокислот можно за­писать так:

Так как аминокислоты со­держат две различные функ­циональные группы, которые оказывают влияние друг на друга, характерные реакции отличают­ся от характерных реакций карбоновых кислот и аминов.

Свойства аминокислот

Аминогруппа — NH2 определяет основные свой­ства аминокислот, т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа —СООН (карбоксильная группа) опреде­ляет кислотные свойства этих соединений. Следовательно, аминокислоты — это амфотерные орга­нические соединения. Со щелочами они реагируют как кислоты:

С сильными кислотами- как основания-амины:

Кроме того, аминогруппа в аминокислоте всту­пает во взаимодействие с входящей в ее состав кар­боксильной группой, образуя внутреннюю соль:

Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

Так как аминокислоты в водных растворах ве­дут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концен­трацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разло­жением при температуре выше 200 °С. Они растворимы в воде и нерастворимы в эфире. В зависи­мости от радикала R— они могут быть сладкими, горькими или безвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтети­ческие. Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно полови­на из этих аминокислот относятся к

незамени­мым, т. к. они не синтезируются в организме че­ловека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, ли­зин, треонин, цистеин, мети­онин, гистидин, триптофан. В организм человека данные вещества поступают с пи­щей. Если их количество в пище будет недостаточ­ным, нормальное развитие и функционирование орга­низма человека нарушаются. При отдельных заболеваниях организм не в состоянии син­тезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин. Важнейшим свойством аминокислот является способность вступать в молекулярную конденса­цию с выделением воды и образованием амидной группировки —NH—СО—, например:

Получаемые в результате такой реакции высокомолекулярные соединения  содержат большое число амидных фрагментов и поэтому получили название полимамидов.

К ним, кроме названного выше синтетического волок­на капрона, относят, напри­мер, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических во­локон пригодны аминокис­лоты с расположением амино- и карбоксильной групп на концах молекул.

Полиамиды альфа-аминокислот называются пепти­дами. В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипепти­ды. В таких соединениях группы —NH—СО— на­зывают пептидными.

Изомерия и номенклатура аминокислот

Изомерия аминокислот определяется различ­ным строением углеродной цепи и положением аминогруппы, например:

Широко распространены также названия ами­нокислот, в которых положение аминогруппы обо­значается буквами греческого алфавита: α, β, у и т. д. Так, 2-аминобутановую кислоту можно на­звать также α-аминокислотой:

Способы получения аминокислот

В биосинтезе белка в живых организмах уча­ствуют 20 аминокислот.

Более подробно про белки.

Классификация аминокислот | Химия онлайн

Аминокислоты классифицируют по следующим структурным признакам.

I. Классификация по взаимному положения функциональных групп

В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α- , b- , g- , d- , e- и т. д.

Греческая буква при атоме углерода обозначает его удаленность от карбоксильной группы.

II. Классификация по строению бокового радикала (функциональным группам)

Алифатические аминокислоты

Моноаминомонокарбоновые кислоты: глицин, аланин, валин, изолейцин, лейцин.

Оксимоноаминокарбоновые кислоты (содержат-ОН-группу): серин, треонин.

Моноаминодикарбоновые кислоты (содержат СООН-группу): аспартат, глутамат (за счёт второй карбоксильной группы несут в растворе отрицательный заряд).

Амиды моноаминодикарбоновых кислоты (содержат NH2СО-группу): аспарагин, глутамин.

Диаминомонокарбоновые кислоты (содержат NH2-группу): лизин, аргинин (за счёт второй аминогруппы несут в растворе положительный заряд).

Серусодержащие кислоты: цистеин, метионин.

Ароматические аминокислоты: фенилаланин, тирозин, триптофан.

Гетероциклические

аминокислоты: триптофан, гистидин, пролин.

Иминокислоты: пролин.

Важнейшие α–аминокислоты

III. Классификация по полярности бокового радикала (по Ленинджеру)

Выделяют четыре класса аминокислот, содержащих радикалы следующих типов.

Гидрофобные аминокислоты располагаются внутри молекулы белка, тогда как гидрофильные – на внешней поверхности, что делает гидрофильными и хорошо растворимыми в воде молекулы белка.

Благодаря этому свойству белки хорошо связывают воду, удерживая жидкость в крови, в межклеточном пространстве и внутри клеток.

1. 

Неполярные (гидрофобные)

К неполярным (гидрофобным) относятся аминокислоты с неполярными  R-группами и одна серусодержащая аминокислота:

— алифатические: аланин, валин, лейцин, изолейцин

— ароматические: фенилаланин, триптофан.

— серусодержащие: метионин

— иминокислота: пролин.

2. Полярные незаряженные

Полярные незаряженные аминокислоты по сравнению с неполярными лучше растворяются в воде, более гидрофильны, так как их функциональные группы образуют водородные связи с молекулами воды.

К ним относятся аминокислоты, содержащие:

— полярную ОН-группу (оксиаминокислоты): серин, треонин  и тирозин

—  HS-группу: цистеин

— амидную  группу: глутамин,  аспарагин

— и глицин (R-группа глицина, представленная одним атомом водорода, слишком мала, чтобы компенсировать сильную полярность a-аминогруппы и a-карбоксильной группы).

3. Заряженные отрицательно при рН-7 (кислые)

Аспарагиновая и глутаминовая кислоты относятся к отрицательно заряженным аминокислотам.

Они содержат по две карбоксильные и по одной аминогруппе, поэтому в ионизированном состоянии их молекулы будут иметь суммарный отрицательный заряд:

4. Заряженные положительно при рН-7 (основные)

К положительно заряженным аминокислотам принадлежат лизин, гистидин и аргинин.

В ионизированном виде они имеют суммарный положительный заряд:

В зависимости от характера радикалов природные аминокислоты также подразделяются на нейтральные, кислые и основные. К нейтральным относятся неполярные и полярные незаряженные, к кислым – отрицательно заряженные, к основным – положительно заряженные.

 

IV. Классификация по кислотно-основным свойствам

В зависимости от количества функциональных групп различают кислые, нейтральные и основные аминокислоты.

Основные

Аминокислоты, в которых число аминогрупп превышает число карбоксильных групп, называют основными аминокислотами: лизин, аргинин, гистидин:

Кислые

Если в аминокислотах имеется избыток кислотных групп, их называют кислыми аминокислотами: аспарагиновая и глутаминовая кислоты:

Все остальные аминокислоты относятся к нейтральным.

V. По числу функциональных групп

Аминокислоты по числу функциональных групп можно разделить моноаминомонокарбоновые, моноаминодикарбоновые, диаминомонокарбоновые:

 

VI.Биологическая классификация (по способности синтезироваться в организме человека и животных)

Заменимые аминокислоты – десять из 20 аминокислот, входящих в состав белков, могут синтезироваться в организме человека. К ним относятся: глицин (гликокол), аланин, серин, цистеин, тирозин, аспарагиновая и глутаминовая кислоты, аспарагин, глутамин, пролин.

Незаменимые аминокислоты (8 аминокислот) – не могут синтезироваться в организме человека и животных и должны поступать в организм в составе белковой пищи.

Абсолютно незаменимых аминокислот восемь: валин, изолейцин, лейцин, треонин, метионин, лизин, фенилаланин, триптофан.

Незаменимые аминокислоты входят часто в состав пищевых добавок, используются в качестве лекарственных препаратов.

Условно незаменимые (2 аминокислоты) — синтезируются в организме, но в недостаточном количестве, поэтому частично должны поступать с пищей. Такими аминокислотами являются  гистидин, аргинин.

Для детей также незаменимыми являются гистидин и аргинин.

Для человека одинаково важны оба типа аминокислот: и заменимые, и незаменимые. Большая часть аминокислот идет на построение собственных белков организма, но без незаменимых аминокислот организм существовать не сможет.

При недостатке каких-либо аминокислот в организме человека в течение непродолжительного времени могут разрушаться белки соединительной ткани, крови, печени и мышц, а полученный из них «строительный материал» — аминокислоты идут на поддержание нормальной работы наиболее важных органов — сердца и мозга.

Дефицит аминокислот приводит к ухудшению аппетита, задержке роста и развития, жировой дистрофии печени и другим тяжелым нарушениям.

При этом наблюдается снижение аппетита, ухудшение состояния кожи, выпадение волос, мышечная слабость, быстрая утомляемость, снижение иммунитета, анемия.

Избыток аминокислот может вызвать развитие тяжелых заболеваний, особенно у детей и в юношеском возрасте. Наиболее токсичными являются метионин (провоцирует риск развития инфаркта и инсульта), тирозин (может спровоцировать развитие артериальной гипертонии, привести к нарушению работы щитовидной железы) и гистидин (может способствовать возникновению дефицита меди в организме и привести к заболеваниям суставов, ранней седине, тяжелым анемиям).

В условиях нормального функционирования организма, когда присутствует достаточное количество витаминов (В6, В12, фолиевой кислоты) и антиоксидантов (витамины А, Е, С и селен), избыток аминокислот не наносит вред организму.

Продукты с повышенным содержанием отдельных незаменимых аминокислот 

Качество некоторых пищевых белков относительно белков женского молока

Аминокислоты

Аминокислоты | CHEMEGE.RU

 

Аминокислоты – органические бифункциональные соединения, в состав которых входят карбоксильные группы –СООН и аминогруппы –NH2.

Природные аминокислоты можно разделить на следующие основные группы:

1) Алифатические предельные аминокислоты (глицин, аланин)NH2-CH2-COOH глицин

NH2-CH(CH3)-COOH аланин

2) Серосодержащие аминокислоты (цистеин)

цистеин

3) Аминокислоты с алифатической гидроксильной группой (серин)NH2-CH(CH2OH)-COOH серин
4) Ароматические аминокислоты (фенилаланин, тирозин)

фенилаланин

тирозин

5) Аминокислоты с двумя карбоксильными группами (глутаминовая кислота)HOOC-CH(NH2)-CH2-CH2-COOH

глутаминовая кислота

6) Аминокислоты с двумя аминогруппами (лизин)CH2(NH2)-CH2-CH2-CH2-CH(NH2)-COOH

лизин

 

 

  • Для природных α-аминокислот R-CH(NH2)COOH применяются тривиальные названия: глицин, аланин, серин и т. д.

 

  • По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино- и указанием места расположения аминогруппы по отношению к карбоксильной группе:

 

2 – Аминобутановая кислота3-Аминобутановая кислота
  • Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино- с указанием положения аминогруппы буквой греческого алфавита.

 

α-Аминомасляная кислотаβ-Аминомасляная кислота

 

 

 

Аминокислоты – твердые кристаллические вещества с высокой температурой плавления. Хорошо растворимы в воде, водные растворы хорошо проводят электрический ток.

 

  • Замещение галогена на аминогруппу в соответствующих галогензамещенных кислотах:

 

  • Восстановление нитрозамещенных карбоновых кислот (применяется для получения ароматических аминокислот):

 

 

При растворении аминокислот в воде карбоксильная группа отщепляет ион водорода, который может присоединиться к аминогруппе. При этом образуется внутренняя соль, молекула которой представляет собой биполярный ион:

 

 

1. Кислотно-основные свойства аминокислот

 

 Аминокислоты — это амфотерные соединения.

 

Они содержат в составе молекулы две функциональные группы противоположного характера: аминогруппу с основными свойствами и карбоксильную группу с кислотными свойствами.

 

Водные растворы аминокислот имеют нейтральную, щелочную или кислую среду в зависимости от количества функциональных групп.

 

Так, глутаминовая кислота образует кислый раствор (две группы -СООН, одна -NH2), лизин — щелочной (одна группа -СООН, две -NH2).

 

1.1. Взаимодействие с металлами и щелочами

Как кислоты (по карбоксильной группе), аминокислоты могут реагировать с металлами, щелочами, образуя соли:

 

1.2. Взаимодействие с кислотами

По аминогруппе аминокислоты реагируют с основаниями:

 

2. Взаимодействие с азотистой кислотой

Аминокислоты способны реагировать с азотистой кислотой.

 

Например, глицин взаимодействует с азотистой кислотой:

 

3. Взаимодействие с аминами

Аминокислоты способны реагировать с аминами, образуя соли или амиды.

 

4. Этерификация

Аминокислоты могут реагировать со спиртами в присутствии газообразного хлороводорода, превращаясь в сложный эфир:

 

Например, глицин взаимодействует с этиловым спиртом:

 

 

 

5. Декарбоксилирование

Протекает при нагревании аминокислот с щелочами или при нагревании.

 

Например, глицин взаимодействует с гидроксидом бария при нагревании:

 

Например, глицин разлагается при нагревании:

 

 

6. Межмолекулярное взаимодействие аминокислот

 При взаимодействии аминокислот образуются пептиды.  При взаимодействии двух α-аминокислот образуется дипептид.

 

Например, глицин реагирует с аланином с образованием дипептида (глицилаланин):

 

Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь CO–NH — пептидной связью.

Строение, свойства и биологические функции аминокислот — Студопедия

Модульная единица 4. Аминокислоты, нуклеотиды и белки.

Лекция 2. Строение, свойства и биологические функции аминокислот, нуклеотидов, белков и витаминов.

Аннотация.В данной лекции даётся биохимическая характеристика протеи-ногенных и других аминокислот, пуриновых и пиримидиновых нуклеотидов, основных групп белков и витаминов. Раскрывается биологическая роль этих веществ в растительных и других организмах. Отмечается влияние белков, аминокислот и витаминов на качество растительной продукции. Даются сведения о содержании белков и витаминов в сельскохозяйственных растениях и получаемой из них растительной продукции.

Ключевые слова:протеиногенные аминокислоты, незаменимые аминокислоты, меланоидины, меланины, пуриновые нуклеотиды, пиримидиновые нуклеотиды, нуклеозиды, дифосфат- и трифосфатпроизводные нуклеотидов, полипептидная теория строения белков, первичная, вторичная, третичная и четвертичная структура белков, пептидная связь, гидрофобное ядро белковой молекулы, нативная конформация белковой молекулы, денатурация белков, фибриллярные и глобулярные формы белковых молекул, протеины, протеиды, альбумины, глобулины, проламины, глютелины, гликопротеиды, липопротеиды, нуклеопротеиды, гистоны, полноценные и неполноценные белки, биологическая ценность белков, водорастворимые и жирорастворимые витамины, провитамины, антивитамины.

Рассматриваемые вопросы:

1. Строение, свойства и биологические функции аминокислот.


2. Строение, свойства и биологические функции нуклеотидов.

3. Строение, свойства и биологические функции белков.

4. Строение, свойства и биологические функции витаминов.

Цели и задачи изучения модульной единицы.Изучить строение, свойства и биологические функции аминокислот, нуклеотидов, витаминов и основных групп белков. Научить студентов использовать сведения об аминокислотах, нуклеотидах, белках и витаминах при оценке качества растительной продукции.

Аминокислоты — это первичные азотистые вещества растений, которые синтезируются с использованием минерального азота, поступающего главным образом из почвы. В молекулах аминокислот имеются карбоксильные и аминные группировки, соединённые с органическим радикалом алифатической, ароматической или гетероциклической природы. Если аминокислота содержит одну карбоксильную и одну аминную группу, связанную со вторым углеродным атомом ( α-положение), строение такой аминокислоты можно выразить следующей формулой:


Аминокислоты, имеющие одну карбоксильную и одну аминную группу, принято называть моноамuномонокарбоновымu. У боль­шинства из них аминогруппа находится в α-положении по отно­шению к атому углерода карбоксильной группы. Однако известны также некоторые аминокислоты, у которых аминогруппа связана с другими углеродными атомами (_b, γ, d и др., см. табл. 1).

В организмах также синтезируются аминокислоты с двумя кар­боксильными или двумя аминными и другими азотсодержащими группировками. Аминокислоты, содержащие две карбоксильные и одну аминную группы, обычно называют моноамuнодuкaрбоновы.мu, а имеющие две аминные и одну карбоксильную — диаминомоно­карбоновымu. Кроме того, аминокислоты различаются по строению радикала R, который может быть представлен неразветвлённой, а иногда и разветвлённой углеродной цепью, ароматическими и гете­роциклическими производными.

Наряду с аминокислотами важную роль в обмене азотистых веществ играют некоторые иминокислоты (пролин, пипеколиио­вая кислота и др.), содержащие вторичную аминную группировку (═NH). Они близки по физико-химическим свойствам к истинным аминокислотам и выполняют сходные биологические функции.

Важные функции в растительном организме выполняют производные аминокислот – амиды и бетаины, из которых наиболее хорошо изучены аспарагин, глутамин и гликоколбетаин. Аспарагин и глутамин участвуют в построении белковых молекул, являются продуктами обмена многих азотистых веществ. Гликоколбетаин ─ продукт азотного обмена у некоторых растений, служит активным донором метильных групп.

Все аминокислоты, за исключением глицина, содержат асим­метрические атомы углерода и проявляют оптическую активность.

D- и L-формы аминокислот различают по положению водорода и аминогруппы у α-углеродного атома. За эталон сравнения прини­маются конфигурации молекул L- и D-серина. Изомеры аминокис­лот, имеющие расположение в пространстве водорода и амино­группы у α-углеродного атома такое же, как у L-серина, относят L-ряду, а сходное с конфигурацией молекулы D-серина – к D-ряду.

Направление и угол вращения плоскости поляризации света у разных аминокислот и их оптических изомеров зависит от строе­ния радикала R, реакции среды (рН), природы растворителя и раст­ворённых в нём веществ.

Подавляющее большинство природных аминокислот синте­зируется в организмах в виде L-форм, а D-формы аминокислот встречаются редко, чаще всего в клетках микроорганизмов. При химическом синтезе образуется смесь L— и D-изомеров аминокислот.

Ферментные системы растений, человека и животных специ­фически приспособлены катализировать биохимические реакции, происходящие с участием L-изомеров аминокислот, и не способны к превращениям D-изомеров, которые даже могут ингибировать биохимические процессы в организме. В опытах установлено, что только метионин может усваиваться организмами человека и животных как в L-форме, так и D-форме.

Первые аминокислоты были открыты в начале XIX века, а к концу этого века уже были выделены и изучены почти все аминокислоты, входящие в состав белков. В настоящее время известно более 200 аминокислот. Важнейшая биологическая роль аминокислот — пост­роение белковых молекул. Аминокислоты, участвующие в синтезе белков, принято называть протеиногенными, их насчитывается 18. Кроме того, в синтезе белков принимают участие два амида — аспара­гин и глутамин.

После синтеза белковой молекулы в ней могут про­исходить модификации радикалов некоторых аминокислот, поэтому при анализе состава белков, кроме протеиногенных, обнаруживают некоторые другие аминокислоты (оксипролин, оксилизин и др.).

Аминокислоты, не участвующие в синтезе белков, являются важными метаболитами, с участием которых происходит синтез протеиногенных аминокислот, а также всех других азотистых ве­ществ растительного организма: нуклеотидов, амидов, азотистых оснований, алкалоидов, некоторых липидов, многих витаминов, хлорофилла, фитогормонов (ауксинов, цитокининов), некоторых фитонцидов. Строение и биологическая роль важнейших амино­кислот представлены в таблице 1.

Растения и природные формы микроорганизмов способны син­тезировать все необходимые им аминокислоты из других органи­ческих веществ, тогда как организмы человека и животных не спо­собны к синтезу некоторых аминокислот, входящих в состав белков. Эти аминокислоты называют незаменимыми и они должны посту­пать в организм с пищей.

Для взрослого человека незаменимыми являются 8 аминокислот: лизин, триптофан, метионин, треонин, лейцин, валин, изолейцин, фенилаланин. Для детей и некоторых групп животных незаменимыми также являются аргинин, гистидин и цистеин. При недостатке незаменимых аминокислот ослабляется синтез белков, что может быть причиной тяжелых заболеваний. А их недостаток в растительных кормах снижает выход животно­водческой продукции в расчете на единицу массы затраченного корма, в результате чего повышается ее себестоимость.

В целях составления правильного пищевого рациона для каж­дого вида организмов с учетом возрастного и физического состо­яния определены ежедневные нормы потребления незаменимых аминокислот. В среднем для человека они составляют, г: валин–­5,0, лейцин–7,0, изолейцин –4,0, лизин–5,5, триптофан–1,0, треонин–4,0, метионин–3,5, фенилаланин –5,0.

Чаще всего в кормах сельскохозяйственных животных в недоста­точном количестве содержатся такие незаменимые аминокислоты, как лизин, триптофан и метионин. Для балансирования кормов по со­держанию

этих аминокислот разработаны промышленные способы их получения. В связи с тем, что лизин и триптофан усваиваются жи­вотными только в виде Lизомеров, то для производства кормовых препаратов указанных аминокислот применяют микробиологический синтез, при котором реализуется природный механизм образова­ния L-изомеров аминокислот. Поскольку метионин может усваи­ваться животными в виде D- и L-форм, то для его промышленного получения используется менее затратный химический синтез, даю­щий рацемическую смесь оптических изомеров этой аминокислоты.

Содержание свободных аминокислот в растениях зависит от вида органа или ткани, возраста растений, внешних условий и особенно подвержено большим изменениям в зависимости от интенсивности протекания тех биохимических процессов, которые сопряжены с их потреблением (синтез белков, нуклеиновых кислот и других азотис­тых веществ). Концентрация аминокислот повышается при ослабле­нии ростовых процессов, недостатке питательных элементов, избы­точном азотном питании, усилении процессов распада белков при старении растений или прорастании семян.

Концентрации отдельных аминокислот могут возрастать в ре­зультате метаболитных нарушений в организме и под воздействием стрессов. Так, например, при вододефицитном стрессе в клетках растений происходит накопление аминокислоты пролина, а при избыточном аммонийном питании – накопление аспарагина, глутамина и аргинина.

Незаменимые аминокислоты: таблица, сокращения и структура

Аминокислота Ala

Аланин, обнаруженный в белке в 1875 году, составляет 30% остатков в шелке. Его низкая реакционная способность способствует простой, удлиненной структуре шелка с небольшим количеством поперечных связей, что придает волокнам прочность, сопротивление растяжению и гибкость. Только l-стереоизомер участвует в биосинтезе белков.

Аминокислота Arg

У человека аргинин вырабатывается при переваривании белков.Затем он может быть преобразован организмом в оксид азота, химическое вещество, которое, как известно, расслабляет кровеносные сосуды.

Благодаря своему сосудорасширяющему действию аргинин был предложен для лечения людей с хронической сердечной недостаточностью, высоким уровнем холестерина, нарушением кровообращения и высоким кровяным давлением, хотя исследования по этим направлениям все еще продолжаются. Аргинин также может производиться синтетическим путем, и родственные аргинину соединения можно использовать для лечения людей с дисфункцией печени из-за их роли в стимулировании регенерации печени.Хотя аргинин необходим для роста, но не для поддержания организма, исследования показали, что аргинин имеет решающее значение для процесса заживления ран, особенно у людей с плохим кровообращением.

Аминокислота Asn

В 1806 году аспарагин был очищен из сока спаржи, что сделало его первой аминокислотой, выделенной из природного источника. Однако только в 1932 году ученые смогли доказать, что аспарагин присутствует в белках. Только l-стереоизомер участвует в биосинтезе белков млекопитающих.Аспарагин важен для удаления токсичного аммиака из организма.

Аминокислота Asp

Аспарагиновая кислота, обнаруженная в белках в 1868 году, обычно содержится в животных белках, однако только l-стереоизомер участвует в биосинтезе белков. Растворимость этой аминокислоты в воде обусловлена ​​наличием рядом с активными центрами ферментов, таких как пепсин.

Аминокислота Cys

Цистеин особенно богат белками волос, копыт и кератином кожи, который был выделен из мочевого камня в 1810 году и из рога в 1899 году.Впоследствии он был химически синтезирован, а структура решена в 1903–1904 годах.

Серосодержащая тиоловая группа в боковой цепи цистеина является ключевой для его свойств, обеспечивая образование дисульфидных мостиков между двумя пептидными цепями (как в случае с инсулином) или образование петли в одной цепи, влияя на окончательную структуру белка. Две молекулы цистеина, связанные между собой дисульфидной связью, составляют аминокислоту цистин, которая иногда указывается отдельно в общих списках аминокислот.Цистеин вырабатывается в организме из серина и метионина и присутствует только в l-стереоизомере белков млекопитающих.


Люди с генетическим заболеванием цистинурией не могут эффективно реабсорбировать цистин в кровоток. Следовательно, в их моче накапливается высокий уровень цистина, где он кристаллизуется и образует камни, которые блокируют почки и мочевой пузырь.

Аминокислота Gln

Глутамин был впервые выделен из свекольного сока в 1883 году, выделен из белка в 1932 году и впоследствии химически синтезирован в следующем году.Глютамин — это самая распространенная в нашем организме аминокислота, которая выполняет несколько важных функций. У людей глутамин синтезируется из глутаминовой кислоты, и этот этап преобразования жизненно важен для регулирования уровня токсичного аммиака в организме, образуя мочевину и пурины.

Аминокислота Glu

Глутаминовая кислота была выделена из пшеничного глютена в 1866 г. и химически синтезирована в 1890 г. Обычно встречается в животных белках, только l-стереоизомер встречается в белках млекопитающих, которые люди могут синтезировать из обычных промежуточных продуктов α-кетоглутаровая кислота.Мононатриевая соль l-глутаминовой кислоты, глутамат натрия (MSG) обычно используется в качестве приправы и усилителя вкуса. Карбоксильная боковая цепь глутаминовой кислоты способна действовать как донор и акцептор аммиака, который токсичен для организма, обеспечивая безопасную транспортировку аммиака в печень, где он превращается в мочевину и выводится почками. Свободная глутаминовая кислота также может разлагаться до диоксида углерода и воды или превращаться в сахара.

Аминокислота Gly

Глицин был первой аминокислотой, выделенной из белка, в данном случае желатина, и единственной, которая не является оптически активной (без d- или l-стереоизомеров).Структурно простейшая из α-аминокислот, она очень инертна при включении в белки. Тем не менее, глицин играет важную роль в биосинтезе аминокислотного серина, кофермента глутатиона, пуринов и гема, жизненно важной части гемоглобина.

His-аминокислота

Гистидин был выделен в 1896 году, и его структура была подтверждена химическим синтезом в 1911 году. Гистидин является прямым предшественником гистамина, а также важным источником углерода в синтезе пуринов.При включении в белки боковая цепь гистидина может действовать как акцептор и донор протонов, передавая важные свойства при объединении с ферментами, такими как химотрипсин, и ферментами, участвующими в метаболизме углеводов, белков и нуклеиновых кислот.

Для младенцев гистидин считается незаменимой аминокислотой, взрослые могут в течение короткого периода времени обходиться без диетического питания, но по-прежнему считается незаменимой.

Иле аминокислота

Изолейцин был выделен из патоки свекловичного сахара в 1904 году.Гидрофобная природа боковой цепи изолейцина важна для определения третичной структуры белков, в которые она включена.

У людей, страдающих редким наследственным заболеванием, называемым болезнью мочи кленового сиропа, имеется дефектный фермент в пути разложения, который является общим для изолейцина, лейцина и валина. Без лечения метаболиты накапливаются в моче пациента, вызывая характерный запах, который и дал название состоянию.

Аминокислота Leu

Лейцин был выделен из сыра в 1819 году и из мышц и шерсти в его кристаллическом состоянии в 1820 году.В 1891 году он был синтезирован в лаборатории.

Только l-стереоизомер присутствует в белке млекопитающих и может разлагаться на более простые соединения ферментами организма. Некоторые связывающие ДНК белки содержат области, в которых лейцины расположены в конфигурации, называемые лейциновыми застежками-молниями.

Аминокислота Lys

Лизин был впервые выделен из казеина молочного белка в 1889 году, а его структура была выяснена в 1902 году. Лизин важен для связывания ферментов с коферментами и играет важную роль в функционировании гистонов.

Многие зерновые культуры содержат очень мало лизина, что привело к его дефициту у некоторых групп населения, которые сильно зависят от них в продуктах питания, а также у вегетарианцев и людей, сидящих на низкожирной диете. Следовательно, были предприняты усилия по разработке штаммов кукурузы, богатых лизином.

Met аминокислота

Метионин был выделен из казеина молочного белка в 1922 году, и его структура была решена лабораторным синтезом в 1928 году. Метионин является важным источником серы для многих соединений в организме, включая цистеин и таурин.Благодаря содержанию серы метионин помогает предотвратить накопление жира в печени и помогает выводить токсины и шлаки метаболизма.

Метионин — единственная незаменимая аминокислота, которая не присутствует в значительных количествах соевых бобов и поэтому производится коммерчески и добавляется во многие продукты из соевого шрота.

Phe Аминокислота

Фенилаланин был впервые выделен из природного источника (ростки люпина) в 1879 году и впоследствии химически синтезирован в 1882 году.Организм человека обычно способен расщеплять фенилаланин до тирозина, однако у людей с наследственным заболеванием фенилкетонурией (PKU) фермент, который выполняет это преобразование, неактивен. Если его не лечить, фенилаланин накапливается в крови, вызывая задержку умственного развития у детей. Примерно 10 000 детей рождаются с этим заболеванием, поэтому диета с низким содержанием фенилаланина в раннем возрасте может облегчить его последствия.

Pro аминокислота

В 1900 году был химически синтезирован пролин.В следующем году он был выделен из казеина из молочного белка, и его структура оказалась такой же. Люди могут синтезировать пролин из глутаминовой кислоты, которая присутствует только как l-стереоизомер в белках млекопитающих. Когда пролин включается в белки, его специфическая структура приводит к резким изгибам или перегибам в пептидной цепи, что в значительной степени способствует окончательной структуре белка. Пролин и его производное гидроксипролин составляют 21% аминокислотных остатков волокнистого белка коллагена, необходимого для соединительной ткани.

Аминокислота Ser

Серин был впервые выделен из белка шелка в 1865 году, но его структура не была установлена ​​до 1902 года. Люди могут синтезировать серин из других метаболитов, включая глицин, хотя только l-стереоизомер присутствует в белках млекопитающих. Серин важен для биосинтеза многих метаболитов и часто важен для каталитической функции ферментов, в которые он включен, включая химотрипсин и трипсин.

Нервные газы и некоторые инсектициды действуют путем объединения с остатком серина в активном центре ацетилхолинэстеразы, полностью ингибируя фермент.Активность эстеразы необходима для расщепления нейромедиатора ацетилхолина, в противном случае накапливается опасно высокий уровень, что быстро приводит к судорогам и смерти.

Аминокислота Thr

Треонин был выделен из фибрина в 1935 году и синтезирован в том же году. Только l-стереоизомер появляется в белках млекопитающих, где он относительно инертен. Хотя он играет важную роль во многих реакциях бактерий, его метаболическая роль у высших животных, включая человека, остается неясной.

Аминокислота Trp

Структура триптофана, выделенная из казеина (молочного белка) в 1901 году, была установлена ​​в 1907 году, но только l-стереоизомер присутствует в белках млекопитающих. В кишечнике человека бактерии расщепляют пищевой триптофан, выделяя такие соединения, как скатол и индол, которые придают фекалиям неприятный аромат. Триптофан превращается в витамин B3 (также называемый никотиновой кислотой или ниацином), но не в достаточной степени, чтобы поддерживать наше здоровье. Следовательно, мы также должны принимать витамин B3, несоблюдение этого правила приводит к его дефициту, называемому пеллагрой.

Аминокислота Tyr

В 1846 году тирозин был выделен в результате разложения казеина (сырного белка), после чего он был синтезирован в лаборатории, и его структура была определена в 1883 году. Присутствует только в l-стереоизомере в белки млекопитающих, люди могут синтезировать тирозин из фенилаланина. Тирозин является важным предшественником гормонов надпочечников адреналина и норэпинефрина, гормонов щитовидной железы, включая тироксин, а также пигмента волос и кожи меланина.В ферментах остатки тирозина часто связаны с активными центрами, изменение которых может изменить специфичность фермента или полностью уничтожить активность.

Страдающие тяжелым генетическим заболеванием фенилкетонурия (ФКУ) неспособны превращать фенилаланин в тирозин, в то время как у пациентов с алкаптонурией метаболизм тирозина нарушен, и моча становится отчетливой и темнеет на воздухе.

Val аминокислота

Структура валина была установлена ​​в 1906 году после его первого выделения из альбумина в 1879 году.В белке млекопитающих появляется только l-стереоизомер. Валин может разлагаться в организме на более простые соединения, но у людей с редким генетическим заболеванием, называемым болезнью мочи кленового сиропа, неисправный фермент прерывает этот процесс и может оказаться фатальным, если его не лечить.

.Аминокислота

— Простая английская Википедия, свободная энциклопедия

Аминокислоты являются конечным продуктом белка. Общая структура α-аминокислоты: аминогруппа слева и карбоксильная группа справа.

Аминокислоты являются строительными блоками белков. У эукариот 20 стандартных аминокислот, из которых состоят почти все белки.

В биохимии аминокислота — это любая молекула, которая имеет как аминные (NH 2 + R), так и карбоксильные (C = O) функциональные группы.В биохимии этот термин относится к альфа-аминокислотам с общей формулой H 2 NCHRCOOH, где R — одна из многих боковых групп (см. Диаграмму).

Известно около 500 аминокислот. [1] Для животных самое важное, что делают аминокислоты, — это производить белки, которые представляют собой очень длинные цепочки аминокислот. Каждый белок имеет свою собственную последовательность аминокислот, и эта последовательность заставляет белок принимать разные формы и выполнять разные функции. Аминокислоты подобны алфавиту для белков; даже если у вас всего несколько букв, если вы соедините их, вы сможете составить много разных предложений.

Девять из 20 стандартных аминокислот являются «незаменимыми» аминокислотами для человека. Они не могут быть построены (синтезированы) человеческим организмом из других соединений, поэтому их необходимо принимать в пищу. Другие могут быть необходимы для некоторых возрастов или заболеваний. Незаменимые аминокислоты также могут различаться между видами. Травоядные животные должны получать свои незаменимые аминокислоты из своего рациона, который для некоторых почти полностью состоит из травы. Жвачные животные, такие как коровы, получают некоторые аминокислоты через микробы в первых двух камерах желудка.

Аминокислота — это органическое химическое вещество. Он состоит из α-атома углерода, ковалентно связанного с четырьмя группами. [2]

  • атом водорода
  • аминогруппа (-NH 2 )
  • карбоксильная группа (-COOH)
  • переменная группа R

Каждая аминокислота имеет по крайней мере одну аминогруппу (-NH 2 ) и одну карбоксильную группу (-COOH), за исключением пролина.

Это протеиногенные аминокислоты, которые являются строительными блоками для белков.Они производятся клеточными механизмами, заложенными в генетическом коде любого организма. [3]

аминокислоты Короткий Сокр. Кодон (ы) Встречаемость
в белках человека
(%)
Essential ‡ для человека
Аланин А Ала GCU, GCC, GCA, GCG 7,8 Нет
Цистеин С Cys УГУ, УГК 1.9 Условно
аспарагиновая кислота D Асп GAU, GAC 5,3 Нет
Глутаминовая кислота E Glu ГАА, ГАГ 6,3 Условно
фенилаланин F Phe UUU, UUC 3,9 Да
глицин G Gly GGU, GGC, GGA, GGG 7.2 Условно
гистидин H Его CAU, CAC 2,3 Да
изолейцин I Иль AUU, AUC, AUA 5,3 Да
лизин К Lys AAA, AAG 5,9 Да
лейцин л лей UUA, UUG, CUU, CUC, CUA, CUG 9.1 Да
метионин млн Met августа 2,3 Да
аспарагин N Asn AAU, AAC 4,3 Нет
пирролизин O Пил UAG * 0 Нет
Пролин P Pro CCU, CCC, CCA, CCG 5.2 Нет
Глютамин Q Gln CAA, CAG 4,2 Нет
аргинин R Арг CGU, CGC, CGA, CGG, AGA, AGG 5,1 Условно
Серин S Ser UCU, UCC, UCA, UCG, AGU, AGC 6,8 Нет
Треонин т Тр ACU, ACC, ACA, ACG 5.9 Да
Селеноцистеин U сек UGA **> 0 Нет
валин В Вал ГУУ, ГУК, ГУА, ГУГ 6,6 Да
триптофан Вт трп UGG 1,4 Да
тирозин Y Тюр UAU, ОАК 3.2 Условно
Стоп-кодон † Срок UAA, UAG, UGA ††

* UAG обычно является янтарным стоп-кодоном, но кодирует пирролизин, если присутствует элемент PYLIS.
** UGA обычно является стоп-кодоном опала (или умбры), но кодирует селеноцистеин, если присутствует элемент SECIS.
† Стоп-кодон не является аминокислотой, но включен для полноты картины.
† † UAG и UGA не всегда действуют как стоп-кодоны (см. Выше).
‡ Незаменимая аминокислота не может быть синтезирована в организме человека. Он должен поступать в рацион. Условно незаменимые аминокислоты обычно не требуются в рационе, но должны поступать в те группы населения, которые не получают их в достаточном количестве.

С этими α-аминокислотами, которые в дальнейшем в процессах биосинтеза появляются второстепенные, структурно (здесь с использованием обозначения SMILES) связаны:

OC (= O) C (N) —

  • ├ H .. 🅖 Глицин
  • ├ C .. 🅐 Аланин
  • │├ С.. 2-аминобутановая кислота
  • ││├ C .. Norvaline
  • │││├ –2H .. 🅟 Пролин (дегидронорвалин)
  • │││├ C .. Норлейцин
  • ││││└ N .. 🅚 Лизин
  • ││││ └ C (= O) C1N = CCC1C .. 🅞 Пирролизин
  • │││└ NC (= N) N .. 🅡 Аргинин
  • ││├ C (= O) N .. 🅠 Глютамин
  • ││├ C (= O) O .. 🅔 Глутаминовая кислота
  • ││├ O .. Гомосерин
  • ││└ S .. Гомоцистеин
  • ││ └ C .. 🅜 Метионин
  • │├ C (C) C .. 🅛 Лейцин
  • │├ C (= O) N.. 🅝 Аспарагин
  • │├ C (= O) O .. 🅓 Аспарагиновая кислота
  • │├ C1 = ЧПУ = N1 .. 🅗 Гистидин
  • │├ c1ccccc1 .. 🅕 Фенилаланин
  • │├ c1ccc (O) cc1 .. 🅨 Тирозин
  • │├ C1 = CNc2ccccc12 .. 🅦 Триптофан
  • │├ C1 = CNc2ccc (O) cc12 .. Окситриптан
  • │├ c (cc1I) cc (I) c1-O-c2cc (I) c (O) c (I) c2 .. Тироксин
  • │├ O .. 🅢 Серин
  • │├ S .. 🅒 Цистеин
  • │└ [SeH] .. 🅤 Селеноцистеин
  • ├ C (C) C .. 🅥 Валин
  • ├ С (С) О.. 🅣 Треонин
  • └ C (C) CC .. 🅘 Изолейцин
.

Краткое руководство по двадцати распространенным аминокислотам — сложный процент

нажмите, чтобы увеличить

Белки, из которых состоят живые организмы, представляют собой огромные молекулы, но они состоят из более мелких строительных блоков, известных как аминокислоты. В природе насчитывается более 500 аминокислот, однако из них генетический код человека напрямую кодирует только 20. Каждый белок в вашем теле состоит из некоторой связанной комбинации этих аминокислот — на этом графике показана структура каждой, а также дать небольшую информацию об обозначениях, используемых для их представления.

В общих чертах эти двадцать аминокислот можно разделить на две группы: незаменимые и несущественные. Незаменимые аминокислоты — это те аминокислоты, которые человеческий организм способен синтезировать, тогда как незаменимые аминокислоты должны быть получены с пищей. Незаменимые аминокислоты представляют собой аланин, аргинин, аспарагин, аспартат, цистеин, глутаминовую кислоту, глутамин, глицин, пролин, серин и тирозин; некоторые из них также можно назвать «условно незаменимыми», что означает, что они могут потребоваться из рациона во время болезни или в результате проблем со здоровьем.Эта подкатегория включает аргинин, глицин, цистеин, тирозин, пролин и глутамин. Незаменимыми аминокислотами являются гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин.

Аминокислоты не могут накапливаться в организме так же, как жир и крахмал, поэтому важно, чтобы мы получали те, которые мы не можем синтезировать из своего рациона. Несоблюдение этого правила может привести к подавлению синтеза белка в организме, что может иметь широкий спектр последующих последствий для здоровья.Аминокислоты образуются в результате расщепления белка в рационе, поэтому дефицит белка в рационе может повлиять на потребление незаменимых аминокислот.

Поскольку белки, образованные аминокислотами, могут быть невероятно большими молекулами, потребуется очень много времени и сложно определить их химическую структуру так же, как мы делаем для более мелких молекул. По этой причине общие аминокислоты, из которых состоят белки, имеют коды, которые можно использовать для их представления, когда они встречаются в молекулах, чтобы упростить описание структуры белков.Существуют как трехбуквенные, так и однобуквенные коды; происхождение однобуквенных кодов было связано с требованием, когда компьютеры были старше и неуклюже, уменьшить размер файлов, используемых для описания последовательностей аминокислот, составляющих белки. Эти однобуквенные коды были разработаны доктором Маргарет Окли Дейхофф, которая считается пионером в области биоинформатики (с использованием программного обеспечения и информационных систем для хранения, организации и интерпретации биологических данных).

Хотя на этой диаграмме показаны 20 аминокислот, которые непосредственно кодирует генетический код человека, были некоторые споры о том, следует ли другую аминокислоту классифицировать как 21-ю.Селеноцистеин — это аминокислота, которая содержится в небольшом количестве белков человека; Однако в отличие от 20, изображенного здесь, он кодируется не напрямую, а особым образом. Еще один, пирролизин, кодируется аналогичным образом и считается 22-й аминокислотой.

(Примечание. Другой способ разделения аминокислот основан на их физических свойствах. Краткое изложение этого метода категоризации аминокислот можно увидеть здесь.)

Вы также можете загрузить версию рисунка, на котором показаны кодоны ДНК для каждой из аминокислот, а также структуры при физиологическом (физиологическом) pH.

Изображение в этой статье находится под лицензией Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. См. Рекомендации по использованию содержания сайта.

Ссылки и дополнительная литература

.

аминокислот — Школа биомедицинских наук Wiki

Из Вики Школы биомедицинских наук

Аминокислоты являются строительными блоками белков — они создают первичную структуру белков. Есть 20 природных аминокислот. Аминокислоты существуют в белках как L-оптические изомеры, однако они могут существовать как D-изомеры в отдельных примерах, например стенки некоторых бактериальных клеток содержат D-изомеры.Когда две аминокислоты соединяются, они образуют пептидную связь. Эта связь работает как частичная двойная связь, в результате чего аминокислоты имеют цис / транс-изомеры. Хотя чаще всего встречается в транс. Все аминокислоты являются амфотерными, что означает, что они могут действовать и как основание, и как кислота благодаря своим амино- и карбоксильным группам соответственно [1] .

Аминокислоты — это мономеры, из которых состоят белки, вступая в реакции конденсации с образованием пептидных связей между собой. Когда аминокислота является частью белка, она известна как аминокислотный остаток, у нее такая же боковая цепь, но это альфа-аминокислота, и карбоксильные группы теперь являются частью пептидных связей.Все аминокислоты имеют группу альфа-карбоновой кислоты, альфа-аминогруппу и атом водорода, связанный с центральным углеродом вместе с четвертой вариабельной группой. Эта группа включает 20 незаменимых аминокислот и обычно позволяет аминокислотам проявлять стериоизомерию для создания оптических изомеров D и L. Единственным исключением из этого правила является простейшая аминокислота глицин, вариабельная группа которой представляет собой другой атом водорода. Это предотвращает стериоизомерию, поскольку нет четырех разных групп, связанных тогда с центральным углеродом — нет хирального центра [2] .

Аминокислоты также могут быть охарактеризованы как полярные или неполярные, и они определяют функцию аминокислот. В ядре белка содержится 10 неполярных аминокислот и 10 полярных аминокислот. Они выполняют ферментативную роль и могут использоваться для связывания ДНК, металлов и других лигандов природного происхождения. Есть незаменимые аминокислоты и заменимые аминокислоты. Незаменимые аминокислоты — это те аминокислоты, которые организм не может синтезировать самостоятельно. Незаменимыми аминокислотами в организме человека являются: гистидин, лейцин, изолейцин, лизин, метионин, валин, фенилаланин, тирозин и триптофан [3] .Эти аминокислоты должны поступать в организм через переваренные белки, которые затем всасываются в кишечнике и транспортируются с кровью туда, где они необходимы [4] . Переваривание клеточных белков также является важным источником аминокислот. Незаменимые аминокислоты могут быть синтезированы из соединений, уже существующих в организме, например, как серин синтезируется из глицина [5] .

Аминокислоты были сокращены до трехбуквенного и однобуквенного кодов.Например, глицин имеет трехбуквенный код «Gly» и букву «G» (см. Однобуквенные коды аминокислот).

В таблице ниже перечислены 20 аминокислот, их однобуквенный код, трехбуквенный код, их заряды и полярность боковой цепи:

Все аминокислоты имеют карбоксильный конец (называемый C-концом) и аминный конец (называемый N-концом), но они различаются своими остаточными группами. Аминокислоты связаны ковалентной связью, называемой пептидной связью [6] .Аминокислоты содержат как карбоксильную группу (COOH), так и аминогруппу (NH 2 ). Структура основной аминокислоты:

Изображение: см. Исх. [7] .

Где (R) — боковая цепь, уникальная для каждой отдельной аминокислоты. Большие аминокислоты образуют жесткую область основной цепи полипептида, в то время как маленькие аминокислоты образуют гибкие области полипептида, позволяя белку складываться в его трехмерную форму. На основе пептида имеется гибкое вращение вокруг пептидной связи, и имеется жесткий плоский пептид, который обусловлен частичной двойной связью.Это то, что позволяет первичной последовательности полипептидов складываться в альфа-спираль, которая представляет собой одну спиральную цепь. Бета-нить — это две нити, скрученные в антипараллельную спираль. Ядро полипептида состоит из гидрофобных аминокислот, таких как фениаланин, тирозин и триптофан [8] . Эти три аминокислоты также являются ароматическими и являются самыми крупными аминокислотами. Другие гидрофобные аминокислоты, но не ароматические, это пролин, валин, изолейцин, лейцин и метионин.

Аминокислоты называют хиральными из-за того, что альфа-углерод связан с четырьмя различными группами.Они могут существовать как одно из двух зеркальных отображений, называемых левовращающим L-изомером и правовращающим D-изомером, с присутствием только L-формы аминокислотного изомера в белках [9] .

Аминокислоты в растворе при нейтральном pH существуют преимущественно в виде диполярных ионов или цвиттерионов. В диполярной форме аминогруппа протонирована, а карбоксильная группа депротонирована. Состояние ионизации аминокислоты изменяется в зависимости от pH [10] . Ряд аминокислот, соединенных пептидными связями, образуют полипептидную цепь, и каждая аминокислотная единица в пептиде называется остатком.Две аминокислоты могут подвергаться реакции конденсации с образованием дипептида, сопровождающейся потерей молекулы воды [11] .

Обычные аминокислоты сгруппированы в соответствии с их боковыми цепями [12] . Например, кислотный, основной, незаряженный полярный и неполярный.

Для основных боковых цепей аминокислоты: лизин (K), аргинин (R) и гистидин (H).

Для кислотных боковых цепей аминокислотами являются: аспарагиновая кислота (D) и глутаминовая кислота (E) (образованные присоединением протона к аминокислотам аспартату и глутамату).

Для незаряженных полярных боковых цепей аминокислоты: аспарагин (N), глутамин (Q), серин (S), треонин (T) и тирозин (Y).

Для неполярных боковых цепей аминокислоты: аланин (A), валин (V), лейцин (L), изолейцин (I), пролин (P), фенилаланин (F), метионин (M), триптофан. (W), Глицин (G) и Цистеин (C).

Пролин (П)

Пролин также известен как аминокислота. который обычно содержится в животных белках. Он не важен для питания человека, так как может синтезироваться в организме из глутаминовой кислоты [13] .В отличие от других аминокислот, которые трансформируются в полипептиды, пролин может существовать в цис-форме в пептидах. Пролин часто находится в конце α-спирали или в виде витков или петель [14] . Пролин — единственная циклическая аминокислота. Это связано с тем, что пролин имеет нечетную циклическую структуру, когда он образует пептидные связи, он вызывает изгиб аминокислотной цепи. Следовательно, пролин также известен как разрушитель альфа-спирали (другой разрушитель альфа-спирали — глицин) [15] .

Аминокислоты в переводе

Во время трансляции мРНК аминокислоты связываются с рибосомой, когда она считывает мРНК, и, используя предоставленную информацию, он производит конкретную аминокислотную последовательность путем образования пептидных связей между карбоксильной группой одной аминокислоты и аминогруппой другой посредством реакция конденсации.Это дает полипептидную цепь. Субъединица 30S сначала связывается с мРНК, а субъединица 50S связывается второй, образуя инициаторный комплекс 70S [16] .

Цистеин (С)

Аминокислота цистеин имеет множество применений и играет важную роль в структуре белка. В основном это связано с его тиоловой группой. Тиол (состоящий из атомов серы и водорода) очень подвержен окислению, что позволяет цистеину образовывать дисульфидные связи с другими молекулами, включая другие цистеины.Полученный продукт двух связанных цистеинов называется цистином. При связывании с другими цистеинами дисульфидная связь значительно увеличивает стабильность белка. Однако, поскольку это реакция окисления, она является исключительной для внеклеточных белков, за некоторыми исключениями. Это связано с тем, что внутренняя часть ячейки сильно восстанавливается, что делает дисульфидную связь очень нестабильной.

Ароматические аминокислоты

Ароматические аминокислоты являются самыми крупными аминокислотами и включают: фенилаланин (F), тирозин (Y) и триптофан (W).Все они могут поглощать ультрафиолетовый свет, однако некоторые могут поглощать больше, чем другие, тирозин и триптофан поглощают больше, чем фенилаланин, что означает, что триптофан является основной молекулой, которая поглощает свет в белке. Ароматические аминокислоты также гидрофобны, поэтому они расположены в ядре белка, поэтому они не находятся рядом с водой. Люди не могут синтезировать фенилаланин или триптофан, а могут производить тирозин только из фенилаланина. Это означает, что ароматические аминокислоты являются жизненно важным компонентом нашей диеты, поскольку мы нуждаемся в них в определенных белках, но не синтезируем их сами.Ароматические аминокислоты содержат ароматическое кольцо [17] . Дефицит фенилаланина может вызвать спутанность сознания, депрессию, недостаток энергии и снижение внимания. Его можно купить в форме таблеток, чтобы восполнить любой дефицит [18] . Неспособность расщепить избыток фенилаланина называется фенилкетонурией. Для борьбы с этим используется диета с низким содержанием фенилаланина, в которой не используются подсластители из аспартама, которые напоминают фенилаланин и могут расщепляться с его образованием.

Ссылки

  1. ↑ Amino Acids [Интернет].Биология LibreTexts. 2013 [цитировано 4 декабря 2018 года]. Доступно по адресу: https://bio.libretexts.org/LibreTexts/University_of_California_Davis/BIS_105%3A__Biomolecules_and_Metabolism_%28Murphy%29/Proteins/Amino_Acids#Characteristics
  2. ↑ Джереми М. Берг, Джон Л. Тимочко, Грегори Дж. Гатто-младший, Луберт Страйер, Биохимия, 8-е издание Freeman
  3. ↑ Берг Дж., Тимочко Дж. И Страйер Л. (2007) Биохимия, 6-е издание, Нью-Йорк: W.H. Фримен и компания, стр. 650.
  4. ↑ Берг Дж., Тимочко Дж. И Страйер Л.(2007) Биохимия, 6-е издание, Нью-Йорк: W.H. Фримен и компания, стр. 650.
  5. ↑ Капалка Г. Тревожные расстройства. Пищевые и лечебные травы для детей и подростков. 2010;: 219-258.
  6. ↑ Alberts, B et al. (2008). Молекулярная биология клетки. 5-е изд. США: Наука о гирляндах. 1268. (стр.59)
  7. ↑ http://www.nutrientsreview.com/proteins/amino-acids
  8. ↑ Дж. М. Берг, Дж. Л. Тимочко, Л. Страйер, (2007) Биохимия, 6-е издание, Нью-Йорк: У. Х. Фриман и компания (стр. 27).
  9. ↑ Берг Дж. Тимочко Дж. Страйер Л., Биохимия, шестое издание (2007, WH Freeman, New York (стр. 27)
  10. )
  11. ↑ Дж. М. Берг, Дж. Л. Тимочко, Л. Страйер, (2007) Биохимия, 6-е издание, Нью-Йорк: У. Х. Фриман и компания (стр. 27)
  12. ↑ http://www.sciencedaily.com/terms/peptide_bond.htm
  13. ↑ Alberts, B et al. (2008). Молекулярная биология клетки. 5-е изд. США: Garland Science. (Стр. 127)
  14. .
  15. ↑ глутаминовая кислота
  16. ↑ http://www.biology.arizona.edu/biochemistry/problem_sets/aa/proline.HTML
  17. ↑ https://www.khanacademy.org/test-prep/mcat/biomolecules/amino-acids-and-proteins1/v/special-cases-histidine-proline-glycine-cysteine ​​
  18. ↑ Берг Дж., Тимочко Дж., Страйер Л. (2007) Биохимия, шестое издание, Нью-Йорк: У. Х. Фриман и компания (стр. 34)
  19. ↑ Университет Аризоны. (2003). Ароматические аминокислоты. Доступно: http://www.biology.arizona.edu/biochemistry/problem_sets/aa/aromatic.html. Последний доступ 1 декабря 2015 г.
  20. ↑ Стивен Д. Эрлих, Медицинский центр Университета Мэриленда, http: // umm.edu / health / medical / altmed / add / фенилаланин, дата обращения 18/10/2016
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *